Source: libs/gl-matrix2.js

"use strict"

/**
 * Auto-generated set of math modules.
 * based on glMatrix 2.1.0
 * pay attention to parameters order, quat.rotationTo() and quat.setAxes()
 */

b4w.module["__vec3"] = function(exports, require) {


var GLMAT_EPSILON = 0.0000001;
var GLMAT_ARRAY_TYPE = (typeof Float32Array !== 'undefined') ? Float32Array : Array;
var GLMAT_RANDOM = Math.random;

/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE. */


/**
 * @module 3 Dimensional Vector
 * @name vec3
 */
var vec3 = exports;

/**
 * Creates a new, empty vec3
 *
 * @returns {Vec3} a new 3D vector
 * @method module:vec3.create
 */
vec3.create = function() {
    var out = new GLMAT_ARRAY_TYPE(3);
    out[0] = 0;
    out[1] = 0;
    out[2] = 0;
    return out;
};

/**
 * Creates a new vec3 initialized with values from an existing vector
 *
 * @param {Vec3} a vector to clone
 * @returns {Vec3} a new 3D vector
 * @method module:vec3.clone
 */
vec3.clone = function(a) {
    var out = new GLMAT_ARRAY_TYPE(3);
    out[0] = a[0];
    out[1] = a[1];
    out[2] = a[2];
    return out;
};

/**
 * Creates a new vec3 initialized with the given values
 *
 * @param {Number} x X component
 * @param {Number} y Y component
 * @param {Number} z Z component
 * @returns {Vec3} a new 3D vector
 * @method module:vec3.fromValues
 */
vec3.fromValues = function(x, y, z) {
    var out = new GLMAT_ARRAY_TYPE(3);
    out[0] = x;
    out[1] = y;
    out[2] = z;
    return out;
};

/**
 * Copy the values from one vec3 to another
 *
 * @param {Vec3} a the source vector
 * @returns {Vec3} out
 * @param {Vec3} out the receiving vector
 * @method module:vec3.copy
 */
vec3.copy = function(a, out) {
    out[0] = a[0];
    out[1] = a[1];
    out[2] = a[2];
    return out;
};

/**
 * Set the components of a vec3 to the given values
 *
 * @param {Number} x X component
 * @param {Number} y Y component
 * @param {Number} z Z component
 * @returns {Vec3} out
 * @param {Vec3} out the receiving vector
 * @method module:vec3.set
 */
vec3.set = function(x, y, z, out) {
    out[0] = x;
    out[1] = y;
    out[2] = z;
    return out;
};

/**
 * Adds two vec3's
 *
 * @param {Vec3} a the first operand
 * @param {Vec3} b the second operand
 * @returns {Vec3} out
 * @param {Vec3} out the receiving vector
 * @method module:vec3.add
 */
vec3.add = function(a, b, out) {
    out[0] = a[0] + b[0];
    out[1] = a[1] + b[1];
    out[2] = a[2] + b[2];
    return out;
};

/**
 * Subtracts vector b from vector a
 *
 * @param {Vec3} a the first operand
 * @param {Vec3} b the second operand
 * @returns {Vec3} out
 * @param {Vec3} out the receiving vector
 * @method module:vec3.subtract
 */
vec3.subtract = function(a, b, out) {
    out[0] = a[0] - b[0];
    out[1] = a[1] - b[1];
    out[2] = a[2] - b[2];
    return out;
};

/**
 * Alias for {@link vec3.subtract}
 * @function
 * @method module:vec3.sub
 */
vec3.sub = vec3.subtract;

/**
 * Multiplies two vec3's
 *
 * @param {Vec3} a the first operand
 * @param {Vec3} b the second operand
 * @returns {Vec3} out
 * @param {Vec3} out the receiving vector
 * @method module:vec3.multiply
 */
vec3.multiply = function(a, b, out) {
    out[0] = a[0] * b[0];
    out[1] = a[1] * b[1];
    out[2] = a[2] * b[2];
    return out;
};

/**
 * Alias for {@link vec3.multiply}
 * @function
 * @method module:vec3.mul
 */
vec3.mul = vec3.multiply;

/**
 * Divides two vec3's
 *
 * @param {Vec3} a the first operand
 * @param {Vec3} b the second operand
 * @returns {Vec3} out
 * @param {Vec3} out the receiving vector
 * @method module:vec3.divide
 */
vec3.divide = function(a, b, out) {
    out[0] = a[0] / b[0];
    out[1] = a[1] / b[1];
    out[2] = a[2] / b[2];
    return out;
};

/**
 * Alias for {@link vec3.divide}
 * @function
 * @method module:vec3.div
 */
vec3.div = vec3.divide;

/**
 * Returns the minimum of two vec3's
 *
 * @param {Vec3} a the first operand
 * @param {Vec3} b the second operand
 * @returns {Vec3} out
 * @param {Vec3} out the receiving vector
 * @method module:vec3.min
 */
vec3.min = function(a, b, out) {
    out[0] = Math.min(a[0], b[0]);
    out[1] = Math.min(a[1], b[1]);
    out[2] = Math.min(a[2], b[2]);
    return out;
};

/**
 * Returns the maximum of two vec3's
 *
 * @param {Vec3} a the first operand
 * @param {Vec3} b the second operand
 * @returns {Vec3} out
 * @param {Vec3} out the receiving vector
 * @method module:vec3.max
 */
vec3.max = function(a, b, out) {
    out[0] = Math.max(a[0], b[0]);
    out[1] = Math.max(a[1], b[1]);
    out[2] = Math.max(a[2], b[2]);
    return out;
};

/**
 * Scales a vec3 by a scalar number
 *
 * @param {Vec3} a the vector to scale
 * @param {Number} b amount to scale the vector by
 * @returns {Vec3} out
 * @param {Vec3} out the receiving vector
 * @method module:vec3.scale
 */
vec3.scale = function(a, b, out) {
    out[0] = a[0] * b;
    out[1] = a[1] * b;
    out[2] = a[2] * b;
    return out;
};

/**
 * Adds two vec3's after scaling the second operand by a scalar value
 *
 * @param {Vec3} a the first operand
 * @param {Vec3} b the second operand
 * @param {Number} scale the amount to scale b by before adding
 * @returns {Vec3} out
 * @param {Vec3} out the receiving vector
 * @method module:vec3.scaleAndAdd
 */
vec3.scaleAndAdd = function(a, b, scale, out) {
    out[0] = a[0] + (b[0] * scale);
    out[1] = a[1] + (b[1] * scale);
    out[2] = a[2] + (b[2] * scale);
    return out;
};

/**
 * Calculates the euclidian distance between two vec3's
 *
 * @param {Vec3} a the first operand
 * @param {Vec3} b the second operand
 * @returns {Number} distance between a and b
 * @method module:vec3.distance
 */
vec3.distance = function(a, b) {
    var x = b[0] - a[0],
        y = b[1] - a[1],
        z = b[2] - a[2];
    return Math.sqrt(x*x + y*y + z*z);
};

/**
 * Alias for {@link vec3.distance}
 * @function
 * @method module:vec3.dist
 */
vec3.dist = vec3.distance;

/**
 * Calculates the squared euclidian distance between two vec3's
 *
 * @param {Vec3} a the first operand
 * @param {Vec3} b the second operand
 * @returns {Number} squared distance between a and b
 * @method module:vec3.squaredDistance
 */
vec3.squaredDistance = function(a, b) {
    var x = b[0] - a[0],
        y = b[1] - a[1],
        z = b[2] - a[2];
    return x*x + y*y + z*z;
};

/**
 * Alias for {@link vec3.squaredDistance}
 * @function
 * @method module:vec3.sqrDist
 */
vec3.sqrDist = vec3.squaredDistance;

/**
 * Calculates the length of a vec3
 *
 * @param {Vec3} a vector to calculate length of
 * @returns {Number} length of a
 * @method module:vec3.length
 */
vec3.length = function (a) {
    var x = a[0],
        y = a[1],
        z = a[2];
    return Math.sqrt(x*x + y*y + z*z);
};

/**
 * Alias for {@link vec3.length}
 * @function
 * @method module:vec3.len
 */
vec3.len = vec3.length;

/**
 * Calculates the squared length of a vec3
 *
 * @param {Vec3} a vector to calculate squared length of
 * @returns {Number} squared length of a
 * @method module:vec3.squaredLength
 */
vec3.squaredLength = function (a) {
    var x = a[0],
        y = a[1],
        z = a[2];
    return x*x + y*y + z*z;
};

/**
 * Alias for {@link vec3.squaredLength}
 * @function
 * @method module:vec3.sqrLen
 */
vec3.sqrLen = vec3.squaredLength;

/**
 * Negates the components of a vec3
 *
 * @param {Vec3} a vector to negate
 * @returns {Vec3} out
 * @param {Vec3} out the receiving vector
 * @method module:vec3.negate
 */
vec3.negate = function(a, out) {
    out[0] = -a[0];
    out[1] = -a[1];
    out[2] = -a[2];
    return out;
};

/**
 * Returns the inverse of the components of a vec3
 *
 * @param {Vec3} a vector to invert
 * @returns {Vec3} out
 * @param {Vec3} out the receiving vector
 * @method module:vec3.inverse
 */
vec3.inverse = function(a, out) {
  out[0] = 1.0 / a[0];
  out[1] = 1.0 / a[1];
  out[2] = 1.0 / a[2];
  return out;
};

/**
 * Normalize a vec3
 *
 * @param {Vec3} a vector to normalize
 * @returns {Vec3} out
 * @param {Vec3} out the receiving vector
 * @method module:vec3.normalize
 */
vec3.normalize = function(a, out) {
    var x = a[0],
        y = a[1],
        z = a[2];
    var len = x*x + y*y + z*z;
    if (len > 0) {
        //TODO: evaluate use of glm_invsqrt here?
        len = 1 / Math.sqrt(len);
        out[0] = a[0] * len;
        out[1] = a[1] * len;
        out[2] = a[2] * len;
    }
    return out;
};

/**
 * Calculates the dot product of two vec3's
 *
 * @param {Vec3} a the first operand
 * @param {Vec3} b the second operand
 * @returns {Number} dot product of a and b
 * @method module:vec3.dot
 */
vec3.dot = function (a, b) {
    return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
};

/**
 * Computes the cross product of two vec3's
 *
 * @param {Vec3} a the first operand
 * @param {Vec3} b the second operand
 * @returns {Vec3} out
 * @param {Vec3} out the receiving vector
 * @method module:vec3.cross
 */
vec3.cross = function(a, b, out) {
    var ax = a[0], ay = a[1], az = a[2],
        bx = b[0], by = b[1], bz = b[2];

    out[0] = ay * bz - az * by;
    out[1] = az * bx - ax * bz;
    out[2] = ax * by - ay * bx;
    return out;
};

/**
 * Performs a linear interpolation between two vec3's
 *
 * @param {Vec3} a the first operand
 * @param {Vec3} b the second operand
 * @param {Number} t interpolation amount between the two inputs
 * @returns {Vec3} out
 * @param {Vec3} out the receiving vector
 * @method module:vec3.lerp
 */
vec3.lerp = function (a, b, t, out) {
    var ax = a[0],
        ay = a[1],
        az = a[2];
    out[0] = ax + t * (b[0] - ax);
    out[1] = ay + t * (b[1] - ay);
    out[2] = az + t * (b[2] - az);
    return out;
};

/**
 * Performs a hermite interpolation with two control points
 *
 * @param {Vec3} a the first operand
 * @param {Vec3} b the second operand
 * @param {Vec3} c the third operand
 * @param {Vec3} d the fourth operand
 * @param {Number} t interpolation amount between the two inputs
 * @returns {Vec3} out
 * @param {Vec3} out the receiving vector
 * @method module:vec3.hermite
 */
vec3.hermite = function (a, b, c, d, t, out) {
  var factorTimes2 = t * t,
      factor1 = factorTimes2 * (2 * t - 3) + 1,
      factor2 = factorTimes2 * (t - 2) + t,
      factor3 = factorTimes2 * (t - 1),
      factor4 = factorTimes2 * (3 - 2 * t);
  
  out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
  out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
  out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
  
  return out;
};

/**
 * Performs a bezier interpolation with two control points
 *
 * @param {Vec3} a the first operand
 * @param {Vec3} b the second operand
 * @param {Vec3} c the third operand
 * @param {Vec3} d the fourth operand
 * @param {Number} t interpolation amount between the two inputs
 * @returns {Vec3} out
 * @param {Vec3} out the receiving vector
 * @method module:vec3.bezier
 */
vec3.bezier = function (a, b, c, d, t, out) {
  var inverseFactor = 1 - t,
      inverseFactorTimesTwo = inverseFactor * inverseFactor,
      factorTimes2 = t * t,
      factor1 = inverseFactorTimesTwo * inverseFactor,
      factor2 = 3 * t * inverseFactorTimesTwo,
      factor3 = 3 * factorTimes2 * inverseFactor,
      factor4 = factorTimes2 * t;
  
  out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
  out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
  out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
  
  return out;
};

/**
 * Generates a random vector with the given scale
 *
 * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned
 * @returns {Vec3} out
 * @param {Vec3} out the receiving vector
 * @method module:vec3.random
 */
vec3.random = function (scale, out) {
    scale = scale || 1.0;

    var r = GLMAT_RANDOM() * 2.0 * Math.PI;
    var z = (GLMAT_RANDOM() * 2.0) - 1.0;
    var zScale = Math.sqrt(1.0-z*z) * scale;

    out[0] = Math.cos(r) * zScale;
    out[1] = Math.sin(r) * zScale;
    out[2] = z * scale;
    return out;
};

/**
 * Transforms the vec3 with a mat4.
 * 4th vector component is implicitly '1'
 *
 * @param {Vec3} a the vector to transform
 * @param {Mat4} m matrix to transform with
 * @returns {Vec3} out
 * @param {Vec3} out the receiving vector
 * @method module:vec3.transformMat4
 */
vec3.transformMat4 = function(a, m, out) {
    var x = a[0], y = a[1], z = a[2],
        w = m[3] * x + m[7] * y + m[11] * z + m[15];
    w = w || 1.0;
    out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w;
    out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w;
    out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w;
    return out;
};

/**
 * Transforms the vec3 with a mat3.
 *
 * @param {Vec3} a the vector to transform
 * @param {Mat4} m the 3x3 matrix to transform with
 * @returns {Vec3} out
 * @param {Vec3} out the receiving vector
 * @method module:vec3.transformMat3
 */
vec3.transformMat3 = function(a, m, out) {
    var x = a[0], y = a[1], z = a[2];
    out[0] = x * m[0] + y * m[3] + z * m[6];
    out[1] = x * m[1] + y * m[4] + z * m[7];
    out[2] = x * m[2] + y * m[5] + z * m[8];
    return out;
};

/**
 * Transforms the vec3 with a quat
 *
 * @param {Vec3} a the vector to transform
 * @param {Quat} q quaternion to transform with
 * @returns {Vec3} out
 * @param {Vec3} out the receiving vector
 * @method module:vec3.transformQuat
 */
vec3.transformQuat = function(a, q, out) {
    // benchmarks: http://jsperf.com/quaternion-transform-vec3-implementations

    var x = a[0], y = a[1], z = a[2],
        qx = q[0], qy = q[1], qz = q[2], qw = q[3],

        // calculate quat * vec
        ix = qw * x + qy * z - qz * y,
        iy = qw * y + qz * x - qx * z,
        iz = qw * z + qx * y - qy * x,
        iw = -qx * x - qy * y - qz * z;

    // calculate result * inverse quat
    out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
    out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
    out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
    return out;
};

/**
 * Rotate a 3D vector around the x-axis
 * @param {Vec3} a The vec3 point to rotate
 * @param {Vec3} b The origin of the rotation
 * @param {Number} c The angle of rotation
 * @returns {Vec3} out
 * @param {Vec3} out The receiving vec3
 * @method module:vec3.rotateX
 */
vec3.rotateX = function(a, b, c, out){
   var p = [], r=[];
	  //Translate point to the origin
	  p[0] = a[0] - b[0];
	  p[1] = a[1] - b[1];
  	p[2] = a[2] - b[2];

	  //perform rotation
	  r[0] = p[0];
	  r[1] = p[1]*Math.cos(c) - p[2]*Math.sin(c);
	  r[2] = p[1]*Math.sin(c) + p[2]*Math.cos(c);

	  //translate to correct position
	  out[0] = r[0] + b[0];
	  out[1] = r[1] + b[1];
	  out[2] = r[2] + b[2];

  	return out;
};

/**
 * Rotate a 3D vector around the y-axis
 * @param {Vec3} a The vec3 point to rotate
 * @param {Vec3} b The origin of the rotation
 * @param {Number} c The angle of rotation
 * @returns {Vec3} out
 * @param {Vec3} out The receiving vec3
 * @method module:vec3.rotateY
 */
vec3.rotateY = function(a, b, c, out){
  	var p = [], r=[];
  	//Translate point to the origin
  	p[0] = a[0] - b[0];
  	p[1] = a[1] - b[1];
  	p[2] = a[2] - b[2];
  
  	//perform rotation
  	r[0] = p[2]*Math.sin(c) + p[0]*Math.cos(c);
  	r[1] = p[1];
  	r[2] = p[2]*Math.cos(c) - p[0]*Math.sin(c);
  
  	//translate to correct position
  	out[0] = r[0] + b[0];
  	out[1] = r[1] + b[1];
  	out[2] = r[2] + b[2];
  
  	return out;
};

/**
 * Rotate a 3D vector around the z-axis
 * @param {Vec3} a The vec3 point to rotate
 * @param {Vec3} b The origin of the rotation
 * @param {Number} c The angle of rotation
 * @returns {Vec3} out
 * @param {Vec3} out The receiving vec3
 * @method module:vec3.rotateZ
 */
vec3.rotateZ = function(a, b, c, out){
  	var p = [], r=[];
  	//Translate point to the origin
  	p[0] = a[0] - b[0];
  	p[1] = a[1] - b[1];
  	p[2] = a[2] - b[2];
  
  	//perform rotation
  	r[0] = p[0]*Math.cos(c) - p[1]*Math.sin(c);
  	r[1] = p[0]*Math.sin(c) + p[1]*Math.cos(c);
  	r[2] = p[2];
  
  	//translate to correct position
  	out[0] = r[0] + b[0];
  	out[1] = r[1] + b[1];
  	out[2] = r[2] + b[2];
  
  	return out;
};

/**
 * Perform some operation over an array of vec3s.
 *
 * @param {Array} a the array of vectors to iterate over
 * @param {Number} stride Number of elements between the start of each vec3. If 0 assumes tightly packed
 * @param {Number} offset Number of elements to skip at the beginning of the array
 * @param {Number} count Number of vec3s to iterate over. If 0 iterates over entire array
 * @param {Function} fn Function to call for each vector in the array
 * @param {Object} [arg] additional argument to pass to fn
 * @returns {Array} a
 * @function
 * @method module:vec3.forEach
 */
vec3.forEach = (function() {
    var vec = vec3.create();

    return function(a, stride, offset, count, fn, arg) {
        var i, l;
        if(!stride) {
            stride = 3;
        }

        if(!offset) {
            offset = 0;
        }
        
        if(count) {
            l = Math.min((count * stride) + offset, a.length);
        } else {
            l = a.length;
        }

        for(i = offset; i < l; i += stride) {
            vec[0] = a[i]; vec[1] = a[i+1]; vec[2] = a[i+2];
            fn(vec, arg, vec);
            a[i] = vec[0]; a[i+1] = vec[1]; a[i+2] = vec[2];
        }
        
        return a;
    };
})();

/**
 * Get the angle between two 3D vectors
 * @param {Vec3} a The first operand
 * @param {Vec3} b The second operand
 * @returns {Number} The angle in radians
 * @method module:vec3.angle
 */
vec3.angle = function(a, b) {
   
    var tempA = vec3.fromValues(a[0], a[1], a[2]);
    var tempB = vec3.fromValues(b[0], b[1], b[2]);
 
    vec3.normalize(tempA, tempA);
    vec3.normalize(tempB, tempB);
 
    var cosine = vec3.dot(tempA, tempB);

    if(cosine > 1.0){
        return 0;
    } else {
        return Math.acos(cosine);
    }     
};

/**
 * Returns a string representation of a vector
 *
 * @param {Vec3} vec vector to represent as a string
 * @returns {String} string representation of the vector
 * @method module:vec3.str
 */
vec3.str = function (a) {
    return 'vec3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ')';
};

}

b4w.module["vec3"] = b4w.module["__vec3"];


b4w.module["__vec4"] = function(exports, require) {


var GLMAT_EPSILON = 0.0000001;
var GLMAT_ARRAY_TYPE = (typeof Float32Array !== 'undefined') ? Float32Array : Array;
var GLMAT_RANDOM = Math.random;

/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE. */


/**
 * @module 4 Dimensional Vector
 * @name vec4
 */
var vec4 = exports;

/**
 * Creates a new, empty vec4
 *
 * @returns {Vec4} a new 4D vector
 * @method module:vec4.create
 */
vec4.create = function() {
    var out = new GLMAT_ARRAY_TYPE(4);
    out[0] = 0;
    out[1] = 0;
    out[2] = 0;
    out[3] = 0;
    return out;
};

/**
 * Creates a new vec4 initialized with values from an existing vector
 *
 * @param {Vec4} a vector to clone
 * @returns {Vec4} a new 4D vector
 * @method module:vec4.clone
 */
vec4.clone = function(a) {
    var out = new GLMAT_ARRAY_TYPE(4);
    out[0] = a[0];
    out[1] = a[1];
    out[2] = a[2];
    out[3] = a[3];
    return out;
};

/**
 * Creates a new vec4 initialized with the given values
 *
 * @param {Number} x X component
 * @param {Number} y Y component
 * @param {Number} z Z component
 * @param {Number} w W component
 * @returns {Vec4} a new 4D vector
 * @method module:vec4.fromValues
 */
vec4.fromValues = function(x, y, z, w) {
    var out = new GLMAT_ARRAY_TYPE(4);
    out[0] = x;
    out[1] = y;
    out[2] = z;
    out[3] = w;
    return out;
};

/**
 * Copy the values from one vec4 to another
 *
 * @param {Vec4} a the source vector
 * @returns {Vec4} out
 * @param {Vec4} out the receiving vector
 * @method module:vec4.copy
 */
vec4.copy = function(a, out) {
    out[0] = a[0];
    out[1] = a[1];
    out[2] = a[2];
    out[3] = a[3];
    return out;
};

/**
 * Set the components of a vec4 to the given values
 *
 * @param {Number} x X component
 * @param {Number} y Y component
 * @param {Number} z Z component
 * @param {Number} w W component
 * @returns {Vec4} out
 * @param {Vec4} out the receiving vector
 * @method module:vec4.set
 */
vec4.set = function(x, y, z, w, out) {
    out[0] = x;
    out[1] = y;
    out[2] = z;
    out[3] = w;
    return out;
};

/**
 * Adds two vec4's
 *
 * @param {Vec4} a the first operand
 * @param {Vec4} b the second operand
 * @returns {Vec4} out
 * @param {Vec4} out the receiving vector
 * @method module:vec4.add
 */
vec4.add = function(a, b, out) {
    out[0] = a[0] + b[0];
    out[1] = a[1] + b[1];
    out[2] = a[2] + b[2];
    out[3] = a[3] + b[3];
    return out;
};

/**
 * Subtracts vector b from vector a
 *
 * @param {Vec4} a the first operand
 * @param {Vec4} b the second operand
 * @returns {Vec4} out
 * @param {Vec4} out the receiving vector
 * @method module:vec4.subtract
 */
vec4.subtract = function(a, b, out) {
    out[0] = a[0] - b[0];
    out[1] = a[1] - b[1];
    out[2] = a[2] - b[2];
    out[3] = a[3] - b[3];
    return out;
};

/**
 * Alias for {@link vec4.subtract}
 * @function
 * @method module:vec4.sub
 */
vec4.sub = vec4.subtract;

/**
 * Multiplies two vec4's
 *
 * @param {Vec4} a the first operand
 * @param {Vec4} b the second operand
 * @returns {Vec4} out
 * @param {Vec4} out the receiving vector
 * @method module:vec4.multiply
 */
vec4.multiply = function(a, b, out) {
    out[0] = a[0] * b[0];
    out[1] = a[1] * b[1];
    out[2] = a[2] * b[2];
    out[3] = a[3] * b[3];
    return out;
};

/**
 * Alias for {@link vec4.multiply}
 * @function
 * @method module:vec4.mul
 */
vec4.mul = vec4.multiply;

/**
 * Divides two vec4's
 *
 * @param {Vec4} a the first operand
 * @param {Vec4} b the second operand
 * @returns {Vec4} out
 * @param {Vec4} out the receiving vector
 * @method module:vec4.divide
 */
vec4.divide = function(a, b, out) {
    out[0] = a[0] / b[0];
    out[1] = a[1] / b[1];
    out[2] = a[2] / b[2];
    out[3] = a[3] / b[3];
    return out;
};

/**
 * Alias for {@link vec4.divide}
 * @function
 * @method module:vec4.div
 */
vec4.div = vec4.divide;

/**
 * Returns the minimum of two vec4's
 *
 * @param {Vec4} a the first operand
 * @param {Vec4} b the second operand
 * @returns {Vec4} out
 * @param {Vec4} out the receiving vector
 * @method module:vec4.min
 */
vec4.min = function(a, b, out) {
    out[0] = Math.min(a[0], b[0]);
    out[1] = Math.min(a[1], b[1]);
    out[2] = Math.min(a[2], b[2]);
    out[3] = Math.min(a[3], b[3]);
    return out;
};

/**
 * Returns the maximum of two vec4's
 *
 * @param {Vec4} a the first operand
 * @param {Vec4} b the second operand
 * @returns {Vec4} out
 * @param {Vec4} out the receiving vector
 * @method module:vec4.max
 */
vec4.max = function(a, b, out) {
    out[0] = Math.max(a[0], b[0]);
    out[1] = Math.max(a[1], b[1]);
    out[2] = Math.max(a[2], b[2]);
    out[3] = Math.max(a[3], b[3]);
    return out;
};

/**
 * Scales a vec4 by a scalar number
 *
 * @param {Vec4} a the vector to scale
 * @param {Number} b amount to scale the vector by
 * @returns {Vec4} out
 * @param {Vec4} out the receiving vector
 * @method module:vec4.scale
 */
vec4.scale = function(a, b, out) {
    out[0] = a[0] * b;
    out[1] = a[1] * b;
    out[2] = a[2] * b;
    out[3] = a[3] * b;
    return out;
};

/**
 * Adds two vec4's after scaling the second operand by a scalar value
 *
 * @param {Vec4} a the first operand
 * @param {Vec4} b the second operand
 * @param {Number} scale the amount to scale b by before adding
 * @returns {Vec4} out
 * @param {Vec4} out the receiving vector
 * @method module:vec4.scaleAndAdd
 */
vec4.scaleAndAdd = function(a, b, scale, out) {
    out[0] = a[0] + (b[0] * scale);
    out[1] = a[1] + (b[1] * scale);
    out[2] = a[2] + (b[2] * scale);
    out[3] = a[3] + (b[3] * scale);
    return out;
};

/**
 * Calculates the euclidian distance between two vec4's
 *
 * @param {Vec4} a the first operand
 * @param {Vec4} b the second operand
 * @returns {Number} distance between a and b
 * @method module:vec4.distance
 */
vec4.distance = function(a, b) {
    var x = b[0] - a[0],
        y = b[1] - a[1],
        z = b[2] - a[2],
        w = b[3] - a[3];
    return Math.sqrt(x*x + y*y + z*z + w*w);
};

/**
 * Alias for {@link vec4.distance}
 * @function
 * @method module:vec4.dist
 */
vec4.dist = vec4.distance;

/**
 * Calculates the squared euclidian distance between two vec4's
 *
 * @param {Vec4} a the first operand
 * @param {Vec4} b the second operand
 * @returns {Number} squared distance between a and b
 * @method module:vec4.squaredDistance
 */
vec4.squaredDistance = function(a, b) {
    var x = b[0] - a[0],
        y = b[1] - a[1],
        z = b[2] - a[2],
        w = b[3] - a[3];
    return x*x + y*y + z*z + w*w;
};

/**
 * Alias for {@link vec4.squaredDistance}
 * @function
 * @method module:vec4.sqrDist
 */
vec4.sqrDist = vec4.squaredDistance;

/**
 * Calculates the length of a vec4
 *
 * @param {Vec4} a vector to calculate length of
 * @returns {Number} length of a
 * @method module:vec4.length
 */
vec4.length = function (a) {
    var x = a[0],
        y = a[1],
        z = a[2],
        w = a[3];
    return Math.sqrt(x*x + y*y + z*z + w*w);
};

/**
 * Alias for {@link vec4.length}
 * @function
 * @method module:vec4.len
 */
vec4.len = vec4.length;

/**
 * Calculates the squared length of a vec4
 *
 * @param {Vec4} a vector to calculate squared length of
 * @returns {Number} squared length of a
 * @method module:vec4.squaredLength
 */
vec4.squaredLength = function (a) {
    var x = a[0],
        y = a[1],
        z = a[2],
        w = a[3];
    return x*x + y*y + z*z + w*w;
};

/**
 * Alias for {@link vec4.squaredLength}
 * @function
 * @method module:vec4.sqrLen
 */
vec4.sqrLen = vec4.squaredLength;

/**
 * Negates the components of a vec4
 *
 * @param {Vec4} a vector to negate
 * @returns {Vec4} out
 * @param {Vec4} out the receiving vector
 * @method module:vec4.negate
 */
vec4.negate = function(a, out) {
    out[0] = -a[0];
    out[1] = -a[1];
    out[2] = -a[2];
    out[3] = -a[3];
    return out;
};

/**
 * Returns the inverse of the components of a vec4
 *
 * @param {Vec4} a vector to invert
 * @returns {Vec4} out
 * @param {Vec4} out the receiving vector
 * @method module:vec4.inverse
 */
vec4.inverse = function(a, out) {
  out[0] = 1.0 / a[0];
  out[1] = 1.0 / a[1];
  out[2] = 1.0 / a[2];
  out[3] = 1.0 / a[3];
  return out;
};

/**
 * Normalize a vec4
 *
 * @param {Vec4} a vector to normalize
 * @returns {Vec4} out
 * @param {Vec4} out the receiving vector
 * @method module:vec4.normalize
 */
vec4.normalize = function(a, out) {
    var x = a[0],
        y = a[1],
        z = a[2],
        w = a[3];
    var len = x*x + y*y + z*z + w*w;
    if (len > 0) {
        len = 1 / Math.sqrt(len);
        out[0] = x * len;
        out[1] = y * len;
        out[2] = z * len;
        out[3] = w * len;
    }
    return out;
};

/**
 * Calculates the dot product of two vec4's
 *
 * @param {Vec4} a the first operand
 * @param {Vec4} b the second operand
 * @returns {Number} dot product of a and b
 * @method module:vec4.dot
 */
vec4.dot = function (a, b) {
    return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
};

/**
 * Performs a linear interpolation between two vec4's
 *
 * @param {Vec4} a the first operand
 * @param {Vec4} b the second operand
 * @param {Number} t interpolation amount between the two inputs
 * @returns {Vec4} out
 * @param {Vec4} out the receiving vector
 * @method module:vec4.lerp
 */
vec4.lerp = function (a, b, t, out) {
    var ax = a[0],
        ay = a[1],
        az = a[2],
        aw = a[3];
    out[0] = ax + t * (b[0] - ax);
    out[1] = ay + t * (b[1] - ay);
    out[2] = az + t * (b[2] - az);
    out[3] = aw + t * (b[3] - aw);
    return out;
};

/**
 * Generates a random vector with the given scale
 *
 * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned
 * @returns {Vec4} out
 * @param {Vec4} out the receiving vector
 * @method module:vec4.random
 */
vec4.random = function (scale, out) {
    scale = scale || 1.0;

    //TODO: This is a pretty awful way of doing this. Find something better.
    out[0] = GLMAT_RANDOM();
    out[1] = GLMAT_RANDOM();
    out[2] = GLMAT_RANDOM();
    out[3] = GLMAT_RANDOM();
    vec4.normalize(out, out);
    vec4.scale(out, scale, out);
    return out;
};

/**
 * Transforms the vec4 with a mat4.
 *
 * @param {Vec4} a the vector to transform
 * @param {Mat4} m matrix to transform with
 * @returns {Vec4} out
 * @param {Vec4} out the receiving vector
 * @method module:vec4.transformMat4
 */
vec4.transformMat4 = function(a, m, out) {
    var x = a[0], y = a[1], z = a[2], w = a[3];
    out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w;
    out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w;
    out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w;
    out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w;
    return out;
};

/**
 * Transforms the vec4 with a quat
 *
 * @param {Vec4} a the vector to transform
 * @param {Quat} q quaternion to transform with
 * @returns {Vec4} out
 * @param {Vec4} out the receiving vector
 * @method module:vec4.transformQuat
 */
vec4.transformQuat = function(a, q, out) {
    var x = a[0], y = a[1], z = a[2],
        qx = q[0], qy = q[1], qz = q[2], qw = q[3],

        // calculate quat * vec
        ix = qw * x + qy * z - qz * y,
        iy = qw * y + qz * x - qx * z,
        iz = qw * z + qx * y - qy * x,
        iw = -qx * x - qy * y - qz * z;

    // calculate result * inverse quat
    out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
    out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
    out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
    out[3] = a[3];
    return out;
};

/**
 * Perform some operation over an array of vec4s.
 *
 * @param {Array} a the array of vectors to iterate over
 * @param {Number} stride Number of elements between the start of each vec4. If 0 assumes tightly packed
 * @param {Number} offset Number of elements to skip at the beginning of the array
 * @param {Number} count Number of vec4s to iterate over. If 0 iterates over entire array
 * @param {Function} fn Function to call for each vector in the array
 * @param {Object} [arg] additional argument to pass to fn
 * @returns {Array} a
 * @function
 * @method module:vec4.forEach
 */
vec4.forEach = (function() {
    var vec = vec4.create();

    return function(a, stride, offset, count, fn, arg) {
        var i, l;
        if(!stride) {
            stride = 4;
        }

        if(!offset) {
            offset = 0;
        }
        
        if(count) {
            l = Math.min((count * stride) + offset, a.length);
        } else {
            l = a.length;
        }

        for(i = offset; i < l; i += stride) {
            vec[0] = a[i]; vec[1] = a[i+1]; vec[2] = a[i+2]; vec[3] = a[i+3];
            fn(vec, arg, vec);
            a[i] = vec[0]; a[i+1] = vec[1]; a[i+2] = vec[2]; a[i+3] = vec[3];
        }
        
        return a;
    };
})();

/**
 * Returns a string representation of a vector
 *
 * @param {Vec4} vec vector to represent as a string
 * @returns {String} string representation of the vector
 * @method module:vec4.str
 */
vec4.str = function (a) {
    return 'vec4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
};

}

b4w.module["vec4"] = b4w.module["__vec4"];


b4w.module["__quat"] = function(exports, require) {

var vec3 = require("__vec3");
var vec4 = require("__vec4");
var mat3 = require("__mat3");

var GLMAT_EPSILON = 0.0000001;
var GLMAT_ARRAY_TYPE = (typeof Float32Array !== 'undefined') ? Float32Array : Array;
var GLMAT_RANDOM = Math.random;

/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE. */


/**
 * @module Quaternion
 * @name quat
 */
var quat = exports;

/**
 * Creates a new identity quat
 *
 * @returns {Quat} a new quaternion
 * @method module:quat.create
 */
quat.create = function() {
    var out = new GLMAT_ARRAY_TYPE(4);
    out[0] = 0;
    out[1] = 0;
    out[2] = 0;
    out[3] = 1;
    return out;
};

/**
 * Sets a quaternion to represent the shortest rotation from one
 * vector to another.
 *
 * Both vectors are assumed to be unit length.
 *
 * @param {Vec3} a the initial vector
 * @param {Vec3} b the destination vector
 * @returns {Quat} out
 * @param {Quat} out the receiving quaternion.
 * @method module:quat.rotationTo
 */
quat.rotationTo = (function() {
    var tmpvec3 = vec3.create();
    var xUnitVec3 = vec3.fromValues(1,0,0);
    var yUnitVec3 = vec3.fromValues(0,1,0);

    return function(a, b, out) {
        var dot = vec3.dot(a, b);
        if (dot < -0.9999999) {
            vec3.cross(xUnitVec3, a, tmpvec3); /* NOTE: CUSTOM REORDER: (tmpvec3, xUnitVec3, a)->(xUnitVec3, a ,tmpvec3) */
            if (vec3.length(tmpvec3) < 0.000001)
                vec3.cross(yUnitVec3, a, tmpvec3); /* NOTE: CUSTOM REORDER: (tmpvec3, yUnitVec3, a)->(yUnitVec3, a ,tmpvec3) */
            vec3.normalize(tmpvec3, tmpvec3);
            quat.setAxisAngle(tmpvec3, Math.PI, out); /* NOTE: CUSTOM REORDER: (out, tmpvec3, Math.PI)->(tmpvec3, Math.PI ,out)*/
            return out;
        } else if (dot > 0.9999999) {
            out[0] = 0;
            out[1] = 0;
            out[2] = 0;
            out[3] = 1;
            return out;
        } else {
            vec3.cross(a, b, tmpvec3); /* NOTE: CUSTOM REORDER: (tmpvec3, a, b)->(a, b ,tmpvec3) */
            out[0] = tmpvec3[0];
            out[1] = tmpvec3[1];
            out[2] = tmpvec3[2];
            out[3] = 1 + dot;
            return quat.normalize(out, out);
        }
    };
})();

/**
 * Sets the specified quaternion with values corresponding to the given
 * axes. Each axis is a vec3 and is expected to be unit length and
 * perpendicular to all other specified axes.
 *
 * @param {Vec3} view  the vector representing the viewing direction
 * @param {Vec3} right the vector representing the local "right" direction
 * @param {Vec3} up    the vector representing the local "up" direction
 * @returns {Quat} out
 * @method module:quat.setAxes
 */
quat.setAxes = (function() {
    var matr = mat3.create();

    return function(view, right, up, out) {
        matr[0] = right[0];
        matr[3] = right[1];
        matr[6] = right[2];

        matr[1] = up[0];
        matr[4] = up[1];
        matr[7] = up[2];

        matr[2] = -view[0];
        matr[5] = -view[1];
        matr[8] = -view[2];

        return quat.normalize(quat.fromMat3(matr, out), out); /* NOTE: DOUBLE CUSTOM REORDER */
    };
})();

/**
 * Creates a new quat initialized with values from an existing quaternion
 *
 * @param {Quat} a quaternion to clone
 * @returns {Quat} a new quaternion
 * @function
 * @method module:quat.clone
 */
quat.clone = vec4.clone;

/**
 * Creates a new quat initialized with the given values
 *
 * @param {Number} x X component
 * @param {Number} y Y component
 * @param {Number} z Z component
 * @param {Number} w W component
 * @returns {Quat} a new quaternion
 * @function
 * @method module:quat.fromValues
 */
quat.fromValues = vec4.fromValues;

/**
 * Copy the values from one quat to another
 *
 * @param {Quat} a the source quaternion
 * @returns {Quat} out
 * @function
 * @param {Quat} out the receiving quaternion
 * @method module:quat.copy
 */
quat.copy = vec4.copy;

/**
 * Set the components of a quat to the given values
 *
 * @param {Number} x X component
 * @param {Number} y Y component
 * @param {Number} z Z component
 * @param {Number} w W component
 * @returns {Quat} out
 * @function
 * @param {Quat} out the receiving quaternion
 * @method module:quat.set
 */
quat.set = vec4.set;

/**
 * Set a quat to the identity quaternion
 *
 * @returns {Quat} out
 * @param {Quat} out the receiving quaternion
 * @method module:quat.identity
 */
quat.identity = function(out) {
    out[0] = 0;
    out[1] = 0;
    out[2] = 0;
    out[3] = 1;
    return out;
};

/**
 * Sets a quat from the given angle and rotation axis,
 * then returns it.
 *
 * @param {Vec3} axis the axis around which to rotate
 * @param {Number} rad the angle in radians
 * @returns {Quat} out
 * @param {Quat} out the receiving quaternion
 * @method module:quat.setAxisAngle
 */
quat.setAxisAngle = function(axis, rad, out) {
    rad = rad * 0.5;
    var s = Math.sin(rad);
    out[0] = s * axis[0];
    out[1] = s * axis[1];
    out[2] = s * axis[2];
    out[3] = Math.cos(rad);
    return out;
};

/**
 * Adds two quat's
 *
 * @param {Quat} a the first operand
 * @param {Quat} b the second operand
 * @returns {Quat} out
 * @function
 * @param {Quat} out the receiving quaternion
 * @method module:quat.add
 */
quat.add = vec4.add;

/**
 * Multiplies two quat's
 *
 * @param {Quat} a the first operand
 * @param {Quat} b the second operand
 * @returns {Quat} out
 * @param {Quat} out the receiving quaternion
 * @method module:quat.multiply
 */
quat.multiply = function(a, b, out) {
    var ax = a[0], ay = a[1], az = a[2], aw = a[3],
        bx = b[0], by = b[1], bz = b[2], bw = b[3];

    out[0] = ax * bw + aw * bx + ay * bz - az * by;
    out[1] = ay * bw + aw * by + az * bx - ax * bz;
    out[2] = az * bw + aw * bz + ax * by - ay * bx;
    out[3] = aw * bw - ax * bx - ay * by - az * bz;
    return out;
};

/**
 * Alias for {@link quat.multiply}
 * @function
 * @method module:quat.mul
 */
quat.mul = quat.multiply;

/**
 * Scales a quat by a scalar number
 *
 * @param {Quat} a the vector to scale
 * @param {Number} b amount to scale the vector by
 * @returns {Quat} out
 * @function
 * @param {Quat} out the receiving vector
 * @method module:quat.scale
 */
quat.scale = vec4.scale;

/**
 * Rotates a quaternion by the given angle about the X axis
 *
 * @param {Quat} a quat to rotate
 * @param {number} rad angle (in radians) to rotate
 * @returns {Quat} out
 * @param {Quat} out quat receiving operation result
 * @method module:quat.rotateX
 */
quat.rotateX = function (a, rad, out) {
    rad *= 0.5; 

    var ax = a[0], ay = a[1], az = a[2], aw = a[3],
        bx = Math.sin(rad), bw = Math.cos(rad);

    out[0] = ax * bw + aw * bx;
    out[1] = ay * bw + az * bx;
    out[2] = az * bw - ay * bx;
    out[3] = aw * bw - ax * bx;
    return out;
};

/**
 * Rotates a quaternion by the given angle about the Y axis
 *
 * @param {Quat} a quat to rotate
 * @param {number} rad angle (in radians) to rotate
 * @returns {Quat} out
 * @param {Quat} out quat receiving operation result
 * @method module:quat.rotateY
 */
quat.rotateY = function (a, rad, out) {
    rad *= 0.5; 

    var ax = a[0], ay = a[1], az = a[2], aw = a[3],
        by = Math.sin(rad), bw = Math.cos(rad);

    out[0] = ax * bw - az * by;
    out[1] = ay * bw + aw * by;
    out[2] = az * bw + ax * by;
    out[3] = aw * bw - ay * by;
    return out;
};

/**
 * Rotates a quaternion by the given angle about the Z axis
 *
 * @param {Quat} a quat to rotate
 * @param {number} rad angle (in radians) to rotate
 * @returns {Quat} out
 * @param {Quat} out quat receiving operation result
 * @method module:quat.rotateZ
 */
quat.rotateZ = function (a, rad, out) {
    rad *= 0.5; 

    var ax = a[0], ay = a[1], az = a[2], aw = a[3],
        bz = Math.sin(rad), bw = Math.cos(rad);

    out[0] = ax * bw + ay * bz;
    out[1] = ay * bw - ax * bz;
    out[2] = az * bw + aw * bz;
    out[3] = aw * bw - az * bz;
    return out;
};

/**
 * Calculates the W component of a quat from the X, Y, and Z components.
 * Assumes that quaternion is 1 unit in length.
 * Any existing W component will be ignored.
 *
 * @param {Quat} a quat to calculate W component of
 * @returns {Quat} out
 * @param {Quat} out the receiving quaternion
 * @method module:quat.calculateW
 */
quat.calculateW = function (a, out) {
    var x = a[0], y = a[1], z = a[2];

    out[0] = x;
    out[1] = y;
    out[2] = z;
    out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));
    return out;
};

/**
 * Calculates the dot product of two quat's
 *
 * @param {Quat} a the first operand
 * @param {Quat} b the second operand
 * @returns {Number} dot product of a and b
 * @function
 * @method module:quat.dot
 */
quat.dot = vec4.dot;

/**
 * Performs a linear interpolation between two quat's
 *
 * @param {Quat} a the first operand
 * @param {Quat} b the second operand
 * @param {Number} t interpolation amount between the two inputs
 * @returns {Quat} out
 * @function
 * @param {Quat} out the receiving quaternion
 * @method module:quat.lerp
 */
quat.lerp = vec4.lerp;

/**
 * Performs a spherical linear interpolation between two quat
 *
 * @param {Quat} a the first operand
 * @param {Quat} b the second operand
 * @param {Number} t interpolation amount between the two inputs
 * @returns {Quat} out
 * @param {Quat} out the receiving quaternion
 * @method module:quat.slerp
 */
quat.slerp = function (a, b, t, out) {
    // benchmarks:
    //    http://jsperf.com/quaternion-slerp-implementations

    var ax = a[0], ay = a[1], az = a[2], aw = a[3],
        bx = b[0], by = b[1], bz = b[2], bw = b[3];

    var        omega, cosom, sinom, scale0, scale1;

    // calc cosine
    cosom = ax * bx + ay * by + az * bz + aw * bw;
    // adjust signs (if necessary)
    if ( cosom < 0.0 ) {
        cosom = -cosom;
        bx = - bx;
        by = - by;
        bz = - bz;
        bw = - bw;
    }
    // calculate coefficients
    if ( (1.0 - cosom) > 0.000001 ) {
        // standard case (slerp)
        omega  = Math.acos(cosom);
        sinom  = Math.sin(omega);
        scale0 = Math.sin((1.0 - t) * omega) / sinom;
        scale1 = Math.sin(t * omega) / sinom;
    } else {        
        // "from" and "to" quaternions are very close 
        //  ... so we can do a linear interpolation
        scale0 = 1.0 - t;
        scale1 = t;
    }
    // calculate final values
    out[0] = scale0 * ax + scale1 * bx;
    out[1] = scale0 * ay + scale1 * by;
    out[2] = scale0 * az + scale1 * bz;
    out[3] = scale0 * aw + scale1 * bw;
    
    return out;
};

/**
 * Performs a spherical linear interpolation with two control points
 *
 * @param {Quat} a the first operand
 * @param {Quat} b the second operand
 * @param {Quat} c the third operand
 * @param {Quat} d the fourth operand
 * @param {Number} t interpolation amount
 * @returns {Quat} out
 * @param {Quat} out the receiving quaternion
 * @method module:quat.sqlerp
 */
quat.sqlerp = (function () {
  var temp1 = quat.create();
  var temp2 = quat.create();
  
  return function (a, b, c, d, t, out) {
    quat.slerp(a, d, t, temp1); /* NOTE: CUSTOM REORDER: */
    quat.slerp(b, c, t, temp2); /* NOTE: CUSTOM REORDER: */
    quat.slerp(temp1, temp2, 2 * t * (1 - t), out); /* NOTE: CUSTOM REORDER:*/
    
    return out;
  };
}());

/**
 * Calculates the inverse of a quat
 *
 * @param {Quat} a quat to calculate inverse of
 * @returns {Quat} out
 * @param {Quat} out the receiving quaternion
 * @method module:quat.invert
 */
quat.invert = function(a, out) {
    var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
        dot = a0*a0 + a1*a1 + a2*a2 + a3*a3,
        invDot = dot ? 1.0/dot : 0;
    
    // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0

    out[0] = -a0*invDot;
    out[1] = -a1*invDot;
    out[2] = -a2*invDot;
    out[3] = a3*invDot;
    return out;
};

/**
 * Calculates the conjugate of a quat
 * If the quaternion is normalized, this function is faster than quat.inverse and produces the same result.
 *
 * @param {Quat} a quat to calculate conjugate of
 * @returns {Quat} out
 * @param {Quat} out the receiving quaternion
 * @method module:quat.conjugate
 */
quat.conjugate = function (a, out) {
    out[0] = -a[0];
    out[1] = -a[1];
    out[2] = -a[2];
    out[3] = a[3];
    return out;
};

/**
 * Calculates the length of a quat
 *
 * @param {Quat} a vector to calculate length of
 * @returns {Number} length of a
 * @function
 * @method module:quat.length
 */
quat.length = vec4.length;

/**
 * Alias for {@link quat.length}
 * @function
 * @method module:quat.len
 */
quat.len = quat.length;

/**
 * Calculates the squared length of a quat
 *
 * @param {Quat} a vector to calculate squared length of
 * @returns {Number} squared length of a
 * @function
 * @method module:quat.squaredLength
 */
quat.squaredLength = vec4.squaredLength;

/**
 * Alias for {@link quat.squaredLength}
 * @function
 * @method module:quat.sqrLen
 */
quat.sqrLen = quat.squaredLength;

/**
 * Normalize a quat
 *
 * @param {Quat} a quaternion to normalize
 * @returns {Quat} out
 * @function
 * @param {Quat} out the receiving quaternion
 * @method module:quat.normalize
 */
quat.normalize = vec4.normalize;

/**
 * Creates a quaternion from the given 3x3 rotation matrix.
 *
 * NOTE: The resultant quaternion is not normalized, so you should be sure
 * to renormalize the quaternion yourself where necessary.
 *
 * @param {Mat3} m rotation matrix
 * @returns {Quat} out
 * @function
 * @param {Quat} out the receiving quaternion
 * @method module:quat.fromMat3
 */
quat.fromMat3 = function(m, out) {
    // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
    // article "Quaternion Calculus and Fast Animation".
    var fTrace = m[0] + m[4] + m[8];
    var fRoot;

    if ( fTrace > 0.0 ) {
        // |w| > 1/2, may as well choose w > 1/2
        fRoot = Math.sqrt(fTrace + 1.0);  // 2w
        out[3] = 0.5 * fRoot;
        fRoot = 0.5/fRoot;  // 1/(4w)
        out[0] = (m[5]-m[7])*fRoot;
        out[1] = (m[6]-m[2])*fRoot;
        out[2] = (m[1]-m[3])*fRoot;
    } else {
        // |w| <= 1/2
        var i = 0;
        if ( m[4] > m[0] )
          i = 1;
        if ( m[8] > m[i*3+i] )
          i = 2;
        var j = (i+1)%3;
        var k = (i+2)%3;
        
        fRoot = Math.sqrt(m[i*3+i]-m[j*3+j]-m[k*3+k] + 1.0);
        out[i] = 0.5 * fRoot;
        fRoot = 0.5 / fRoot;
        out[3] = (m[j*3+k] - m[k*3+j]) * fRoot;
        out[j] = (m[j*3+i] + m[i*3+j]) * fRoot;
        out[k] = (m[k*3+i] + m[i*3+k]) * fRoot;
    }
    
    return out;
};

/**
 * Returns a string representation of a quatenion
 *
 * @param {Quat} vec vector to represent as a string
 * @returns {String} string representation of the vector
 * @method module:quat.str
 */
quat.str = function (a) {
    return 'quat(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
};

}

b4w.module["quat"] = b4w.module["__quat"];


b4w.module["__mat3"] = function(exports, require) {


var GLMAT_EPSILON = 0.0000001;
var GLMAT_ARRAY_TYPE = (typeof Float32Array !== 'undefined') ? Float32Array : Array;
var GLMAT_RANDOM = Math.random;

/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE. */


/**
 * @module 3x3 Matrix
 * @name mat3
 */
var mat3 = exports;

/**
 * Creates a new identity mat3
 *
 * @returns {Mat3} a new 3x3 matrix
 * @method module:mat3.create
 */
mat3.create = function() {
    var out = new GLMAT_ARRAY_TYPE(9);
    out[0] = 1;
    out[1] = 0;
    out[2] = 0;
    out[3] = 0;
    out[4] = 1;
    out[5] = 0;
    out[6] = 0;
    out[7] = 0;
    out[8] = 1;
    return out;
};

/**
 * Copies the upper-left 3x3 values into the given mat3.
 *
 * @param {Mat4} a   the source 4x4 matrix
 * @returns {Mat3} out
 * @param {Mat3} out the receiving 3x3 matrix
 * @method module:mat3.fromMat4
 */
mat3.fromMat4 = function(a, out) {
    out[0] = a[0];
    out[1] = a[1];
    out[2] = a[2];
    out[3] = a[4];
    out[4] = a[5];
    out[5] = a[6];
    out[6] = a[8];
    out[7] = a[9];
    out[8] = a[10];
    return out;
};

/**
 * Creates a new mat3 initialized with values from an existing matrix
 *
 * @param {Mat3} a matrix to clone
 * @returns {Mat3} a new 3x3 matrix
 * @method module:mat3.clone
 */
mat3.clone = function(a) {
    var out = new GLMAT_ARRAY_TYPE(9);
    out[0] = a[0];
    out[1] = a[1];
    out[2] = a[2];
    out[3] = a[3];
    out[4] = a[4];
    out[5] = a[5];
    out[6] = a[6];
    out[7] = a[7];
    out[8] = a[8];
    return out;
};

/**
 * Copy the values from one mat3 to another
 *
 * @param {Mat3} a the source matrix
 * @returns {Mat3} out
 * @param {Mat3} out the receiving matrix
 * @method module:mat3.copy
 */
mat3.copy = function(a, out) {
    out[0] = a[0];
    out[1] = a[1];
    out[2] = a[2];
    out[3] = a[3];
    out[4] = a[4];
    out[5] = a[5];
    out[6] = a[6];
    out[7] = a[7];
    out[8] = a[8];
    return out;
};

/**
 * Set a mat3 to the identity matrix
 *
 * @returns {Mat3} out
 * @param {Mat3} out the receiving matrix
 * @method module:mat3.identity
 */
mat3.identity = function(out) {
    out[0] = 1;
    out[1] = 0;
    out[2] = 0;
    out[3] = 0;
    out[4] = 1;
    out[5] = 0;
    out[6] = 0;
    out[7] = 0;
    out[8] = 1;
    return out;
};

/**
 * Transpose the values of a mat3
 *
 * @param {Mat3} a the source matrix
 * @returns {Mat3} out
 * @param {Mat3} out the receiving matrix
 * @method module:mat3.transpose
 */
mat3.transpose = function(a, out) {
    // If we are transposing ourselves we can skip a few steps but have to cache some values
    if (out === a) {
        var a01 = a[1], a02 = a[2], a12 = a[5];
        out[1] = a[3];
        out[2] = a[6];
        out[3] = a01;
        out[5] = a[7];
        out[6] = a02;
        out[7] = a12;
    } else {
        out[0] = a[0];
        out[1] = a[3];
        out[2] = a[6];
        out[3] = a[1];
        out[4] = a[4];
        out[5] = a[7];
        out[6] = a[2];
        out[7] = a[5];
        out[8] = a[8];
    }
    
    return out;
};

/**
 * Inverts a mat3
 *
 * @param {Mat3} a the source matrix
 * @returns {Mat3} out
 * @param {Mat3} out the receiving matrix
 * @method module:mat3.invert
 */
mat3.invert = function(a, out) {
    var a00 = a[0], a01 = a[1], a02 = a[2],
        a10 = a[3], a11 = a[4], a12 = a[5],
        a20 = a[6], a21 = a[7], a22 = a[8],

        b01 = a22 * a11 - a12 * a21,
        b11 = -a22 * a10 + a12 * a20,
        b21 = a21 * a10 - a11 * a20,

        // Calculate the determinant
        det = a00 * b01 + a01 * b11 + a02 * b21;

    if (!det) { 
        return null; 
    }
    det = 1.0 / det;

    out[0] = b01 * det;
    out[1] = (-a22 * a01 + a02 * a21) * det;
    out[2] = (a12 * a01 - a02 * a11) * det;
    out[3] = b11 * det;
    out[4] = (a22 * a00 - a02 * a20) * det;
    out[5] = (-a12 * a00 + a02 * a10) * det;
    out[6] = b21 * det;
    out[7] = (-a21 * a00 + a01 * a20) * det;
    out[8] = (a11 * a00 - a01 * a10) * det;
    return out;
};

/**
 * Calculates the adjugate of a mat3
 *
 * @param {Mat3} a the source matrix
 * @returns {Mat3} out
 * @param {Mat3} out the receiving matrix
 * @method module:mat3.adjoint
 */
mat3.adjoint = function(a, out) {
    var a00 = a[0], a01 = a[1], a02 = a[2],
        a10 = a[3], a11 = a[4], a12 = a[5],
        a20 = a[6], a21 = a[7], a22 = a[8];

    out[0] = (a11 * a22 - a12 * a21);
    out[1] = (a02 * a21 - a01 * a22);
    out[2] = (a01 * a12 - a02 * a11);
    out[3] = (a12 * a20 - a10 * a22);
    out[4] = (a00 * a22 - a02 * a20);
    out[5] = (a02 * a10 - a00 * a12);
    out[6] = (a10 * a21 - a11 * a20);
    out[7] = (a01 * a20 - a00 * a21);
    out[8] = (a00 * a11 - a01 * a10);
    return out;
};

/**
 * Calculates the determinant of a mat3
 *
 * @param {Mat3} a the source matrix
 * @returns {Number} determinant of a
 * @method module:mat3.determinant
 */
mat3.determinant = function (a) {
    var a00 = a[0], a01 = a[1], a02 = a[2],
        a10 = a[3], a11 = a[4], a12 = a[5],
        a20 = a[6], a21 = a[7], a22 = a[8];

    return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20);
};

/**
 * Multiplies two mat3's
 *
 * @param {Mat3} a the first operand
 * @param {Mat3} b the second operand
 * @returns {Mat3} out
 * @param {Mat3} out the receiving matrix
 * @method module:mat3.multiply
 */
mat3.multiply = function (a, b, out) {
    var a00 = a[0], a01 = a[1], a02 = a[2],
        a10 = a[3], a11 = a[4], a12 = a[5],
        a20 = a[6], a21 = a[7], a22 = a[8],

        b00 = b[0], b01 = b[1], b02 = b[2],
        b10 = b[3], b11 = b[4], b12 = b[5],
        b20 = b[6], b21 = b[7], b22 = b[8];

    out[0] = b00 * a00 + b01 * a10 + b02 * a20;
    out[1] = b00 * a01 + b01 * a11 + b02 * a21;
    out[2] = b00 * a02 + b01 * a12 + b02 * a22;

    out[3] = b10 * a00 + b11 * a10 + b12 * a20;
    out[4] = b10 * a01 + b11 * a11 + b12 * a21;
    out[5] = b10 * a02 + b11 * a12 + b12 * a22;

    out[6] = b20 * a00 + b21 * a10 + b22 * a20;
    out[7] = b20 * a01 + b21 * a11 + b22 * a21;
    out[8] = b20 * a02 + b21 * a12 + b22 * a22;
    return out;
};

/**
 * Alias for {@link mat3.multiply}
 * @function
 * @method module:mat3.mul
 */
mat3.mul = mat3.multiply;

/**
 * Translate a mat3 by the given vector
 *
 * @param {Mat3} a the matrix to translate
 * @param {vec2} v vector to translate by
 * @returns {Mat3} out
 * @param {Mat3} out the receiving matrix
 * @method module:mat3.translate
 */
mat3.translate = function(a, v, out) {
    var a00 = a[0], a01 = a[1], a02 = a[2],
        a10 = a[3], a11 = a[4], a12 = a[5],
        a20 = a[6], a21 = a[7], a22 = a[8],
        x = v[0], y = v[1];

    out[0] = a00;
    out[1] = a01;
    out[2] = a02;

    out[3] = a10;
    out[4] = a11;
    out[5] = a12;

    out[6] = x * a00 + y * a10 + a20;
    out[7] = x * a01 + y * a11 + a21;
    out[8] = x * a02 + y * a12 + a22;
    return out;
};

/**
 * Rotates a mat3 by the given angle
 *
 * @param {Mat3} a the matrix to rotate
 * @param {Number} rad the angle to rotate the matrix by
 * @returns {Mat3} out
 * @param {Mat3} out the receiving matrix
 * @method module:mat3.rotate
 */
mat3.rotate = function (a, rad, out) {
    var a00 = a[0], a01 = a[1], a02 = a[2],
        a10 = a[3], a11 = a[4], a12 = a[5],
        a20 = a[6], a21 = a[7], a22 = a[8],

        s = Math.sin(rad),
        c = Math.cos(rad);

    out[0] = c * a00 + s * a10;
    out[1] = c * a01 + s * a11;
    out[2] = c * a02 + s * a12;

    out[3] = c * a10 - s * a00;
    out[4] = c * a11 - s * a01;
    out[5] = c * a12 - s * a02;

    out[6] = a20;
    out[7] = a21;
    out[8] = a22;
    return out;
};

/**
 * Scales the mat3 by the dimensions in the given vec2
 *
 * @param {Mat3} a the matrix to rotate
 * @param {vec2} v the vec2 to scale the matrix by
 * @returns {Mat3} out
 * @param {Mat3} out the receiving matrix
 * @method module:mat3.scale
 */
mat3.scale = function(a, v, out) {
    var x = v[0], y = v[1];

    out[0] = x * a[0];
    out[1] = x * a[1];
    out[2] = x * a[2];

    out[3] = y * a[3];
    out[4] = y * a[4];
    out[5] = y * a[5];

    out[6] = a[6];
    out[7] = a[7];
    out[8] = a[8];
    return out;
};

/**
 * Creates a matrix from a vector translation
 * This is equivalent to (but much faster than):
 *
 *     mat3.identity(dest);
 *     mat3.translate(dest, dest, vec);
 *
 * @param {vec2} v Translation vector
 * @returns {Mat3} out
 * @param {Mat3} out mat3 receiving operation result
 * @method module:mat3.fromTranslation
 */
mat3.fromTranslation = function(v, out) {
    out[0] = 1;
    out[1] = 0;
    out[2] = 0;
    out[3] = 0;
    out[4] = 1;
    out[5] = 0;
    out[6] = v[0];
    out[7] = v[1];
    out[8] = 1;
    return out;
}

/**
 * Creates a matrix from a given angle
 * This is equivalent to (but much faster than):
 *
 *     mat3.identity(dest);
 *     mat3.rotate(dest, dest, rad);
 *
 * @param {Number} rad the angle to rotate the matrix by
 * @returns {Mat3} out
 * @param {Mat3} out mat3 receiving operation result
 * @method module:mat3.fromRotation
 */
mat3.fromRotation = function(rad, out) {
    var s = Math.sin(rad), c = Math.cos(rad);

    out[0] = c;
    out[1] = s;
    out[2] = 0;

    out[3] = -s;
    out[4] = c;
    out[5] = 0;

    out[6] = 0;
    out[7] = 0;
    out[8] = 1;
    return out;
}

/**
 * Creates a matrix from a vector scaling
 * This is equivalent to (but much faster than):
 *
 *     mat3.identity(dest);
 *     mat3.scale(dest, dest, vec);
 *
 * @param {vec2} v Scaling vector
 * @returns {Mat3} out
 * @param {Mat3} out mat3 receiving operation result
 * @method module:mat3.fromScaling
 */
mat3.fromScaling = function(v, out) {
    out[0] = v[0];
    out[1] = 0;
    out[2] = 0;

    out[3] = 0;
    out[4] = v[1];
    out[5] = 0;

    out[6] = 0;
    out[7] = 0;
    out[8] = 1;
    return out;
}

/**
 * Copies the values from a mat2d into a mat3
 *
 * @param {mat2d} a the matrix to copy
 * @returns {Mat3} out
 * @param {Mat3} out the receiving matrix
 * @method module:mat3.fromMat2d
 */
mat3.fromMat2d = function(a, out) {
    out[0] = a[0];
    out[1] = a[1];
    out[2] = 0;

    out[3] = a[2];
    out[4] = a[3];
    out[5] = 0;

    out[6] = a[4];
    out[7] = a[5];
    out[8] = 1;
    return out;
};

/**
* Calculates a 3x3 matrix from the given quaternion
*
* @param {Quat} q Quaternion to create matrix from
*
* @returns {Mat3} out
* @param {Mat3} out mat3 receiving operation result
 * @method module:mat3.fromQuat
 */
mat3.fromQuat = function (q, out) {
    var x = q[0], y = q[1], z = q[2], w = q[3],
        x2 = x + x,
        y2 = y + y,
        z2 = z + z,

        xx = x * x2,
        yx = y * x2,
        yy = y * y2,
        zx = z * x2,
        zy = z * y2,
        zz = z * z2,
        wx = w * x2,
        wy = w * y2,
        wz = w * z2;

    out[0] = 1 - yy - zz;
    out[3] = yx - wz;
    out[6] = zx + wy;

    out[1] = yx + wz;
    out[4] = 1 - xx - zz;
    out[7] = zy - wx;

    out[2] = zx - wy;
    out[5] = zy + wx;
    out[8] = 1 - xx - yy;

    return out;
};

/**
* Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix
*
* @param {Mat4} a Mat4 to derive the normal matrix from
*
* @returns {Mat3} out
* @param {Mat3} out mat3 receiving operation result
 * @method module:mat3.normalFromMat4
 */
mat3.normalFromMat4 = function (a, out) {
    var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
        a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
        a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
        a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],

        b00 = a00 * a11 - a01 * a10,
        b01 = a00 * a12 - a02 * a10,
        b02 = a00 * a13 - a03 * a10,
        b03 = a01 * a12 - a02 * a11,
        b04 = a01 * a13 - a03 * a11,
        b05 = a02 * a13 - a03 * a12,
        b06 = a20 * a31 - a21 * a30,
        b07 = a20 * a32 - a22 * a30,
        b08 = a20 * a33 - a23 * a30,
        b09 = a21 * a32 - a22 * a31,
        b10 = a21 * a33 - a23 * a31,
        b11 = a22 * a33 - a23 * a32,

        // Calculate the determinant
        det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;

    if (!det) { 
        return null; 
    }
    det = 1.0 / det;

    out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
    out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
    out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det;

    out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
    out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
    out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det;

    out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
    out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
    out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det;

    return out;
};

/**
 * Returns a string representation of a mat3
 *
 * @param {Mat3} mat matrix to represent as a string
 * @returns {String} string representation of the matrix
 * @method module:mat3.str
 */
mat3.str = function (a) {
    return 'mat3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + 
                    a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + 
                    a[6] + ', ' + a[7] + ', ' + a[8] + ')';
};

/**
 * Returns Frobenius norm of a mat3
 *
 * @param {Mat3} a the matrix to calculate Frobenius norm of
 * @returns {Number} Frobenius norm
 * @method module:mat3.frob
 */
mat3.frob = function (a) {
    return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2)))
};


}

b4w.module["mat3"] = b4w.module["__mat3"];


b4w.module["__mat4"] = function(exports, require) {


var GLMAT_EPSILON = 0.0000001;
var GLMAT_ARRAY_TYPE = (typeof Float32Array !== 'undefined') ? Float32Array : Array;
var GLMAT_RANDOM = Math.random;

/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE. */


/**
 * @module 4x4 Matrix
 * @name mat4
 */
var mat4 = exports;

/**
 * Creates a new identity mat4
 *
 * @returns {Mat4} a new 4x4 matrix
 * @method module:mat4.create
 */
mat4.create = function() {
    var out = new GLMAT_ARRAY_TYPE(16);
    out[0] = 1;
    out[1] = 0;
    out[2] = 0;
    out[3] = 0;
    out[4] = 0;
    out[5] = 1;
    out[6] = 0;
    out[7] = 0;
    out[8] = 0;
    out[9] = 0;
    out[10] = 1;
    out[11] = 0;
    out[12] = 0;
    out[13] = 0;
    out[14] = 0;
    out[15] = 1;
    return out;
};

/**
 * Creates a new mat4 initialized with values from an existing matrix
 *
 * @param {Mat4} a matrix to clone
 * @returns {Mat4} a new 4x4 matrix
 * @method module:mat4.clone
 */
mat4.clone = function(a) {
    var out = new GLMAT_ARRAY_TYPE(16);
    out[0] = a[0];
    out[1] = a[1];
    out[2] = a[2];
    out[3] = a[3];
    out[4] = a[4];
    out[5] = a[5];
    out[6] = a[6];
    out[7] = a[7];
    out[8] = a[8];
    out[9] = a[9];
    out[10] = a[10];
    out[11] = a[11];
    out[12] = a[12];
    out[13] = a[13];
    out[14] = a[14];
    out[15] = a[15];
    return out;
};

/**
 * Copy the values from one mat4 to another
 *
 * @param {Mat4} a the source matrix
 * @returns {Mat4} out
 * @param {Mat4} out the receiving matrix
 * @method module:mat4.copy
 */
mat4.copy = function(a, out) {
    out[0] = a[0];
    out[1] = a[1];
    out[2] = a[2];
    out[3] = a[3];
    out[4] = a[4];
    out[5] = a[5];
    out[6] = a[6];
    out[7] = a[7];
    out[8] = a[8];
    out[9] = a[9];
    out[10] = a[10];
    out[11] = a[11];
    out[12] = a[12];
    out[13] = a[13];
    out[14] = a[14];
    out[15] = a[15];
    return out;
};

/**
 * Set a mat4 to the identity matrix
 *
 * @returns {Mat4} out
 * @param {Mat4} out the receiving matrix
 * @method module:mat4.identity
 */
mat4.identity = function(out) {
    out[0] = 1;
    out[1] = 0;
    out[2] = 0;
    out[3] = 0;
    out[4] = 0;
    out[5] = 1;
    out[6] = 0;
    out[7] = 0;
    out[8] = 0;
    out[9] = 0;
    out[10] = 1;
    out[11] = 0;
    out[12] = 0;
    out[13] = 0;
    out[14] = 0;
    out[15] = 1;
    return out;
};

/**
 * Transpose the values of a mat4
 *
 * @param {Mat4} a the source matrix
 * @returns {Mat4} out
 * @param {Mat4} out the receiving matrix
 * @method module:mat4.transpose
 */
mat4.transpose = function(a, out) {
    // If we are transposing ourselves we can skip a few steps but have to cache some values
    if (out === a) {
        var a01 = a[1], a02 = a[2], a03 = a[3],
            a12 = a[6], a13 = a[7],
            a23 = a[11];

        out[1] = a[4];
        out[2] = a[8];
        out[3] = a[12];
        out[4] = a01;
        out[6] = a[9];
        out[7] = a[13];
        out[8] = a02;
        out[9] = a12;
        out[11] = a[14];
        out[12] = a03;
        out[13] = a13;
        out[14] = a23;
    } else {
        out[0] = a[0];
        out[1] = a[4];
        out[2] = a[8];
        out[3] = a[12];
        out[4] = a[1];
        out[5] = a[5];
        out[6] = a[9];
        out[7] = a[13];
        out[8] = a[2];
        out[9] = a[6];
        out[10] = a[10];
        out[11] = a[14];
        out[12] = a[3];
        out[13] = a[7];
        out[14] = a[11];
        out[15] = a[15];
    }
    
    return out;
};

/**
 * Inverts a mat4
 *
 * @param {Mat4} a the source matrix
 * @returns {Mat4} out
 * @param {Mat4} out the receiving matrix
 * @method module:mat4.invert
 */
mat4.invert = function(a, out) {
    var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
        a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
        a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
        a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],

        b00 = a00 * a11 - a01 * a10,
        b01 = a00 * a12 - a02 * a10,
        b02 = a00 * a13 - a03 * a10,
        b03 = a01 * a12 - a02 * a11,
        b04 = a01 * a13 - a03 * a11,
        b05 = a02 * a13 - a03 * a12,
        b06 = a20 * a31 - a21 * a30,
        b07 = a20 * a32 - a22 * a30,
        b08 = a20 * a33 - a23 * a30,
        b09 = a21 * a32 - a22 * a31,
        b10 = a21 * a33 - a23 * a31,
        b11 = a22 * a33 - a23 * a32,

        // Calculate the determinant
        det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;

    if (!det) { 
        return null; 
    }
    det = 1.0 / det;

    out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
    out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
    out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
    out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;
    out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
    out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
    out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
    out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;
    out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
    out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
    out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
    out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;
    out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;
    out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;
    out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;
    out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;

    return out;
};

/**
 * Calculates the adjugate of a mat4
 *
 * @param {Mat4} a the source matrix
 * @returns {Mat4} out
 * @param {Mat4} out the receiving matrix
 * @method module:mat4.adjoint
 */
mat4.adjoint = function(a, out) {
    var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
        a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
        a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
        a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];

    out[0]  =  (a11 * (a22 * a33 - a23 * a32) - a21 * (a12 * a33 - a13 * a32) + a31 * (a12 * a23 - a13 * a22));
    out[1]  = -(a01 * (a22 * a33 - a23 * a32) - a21 * (a02 * a33 - a03 * a32) + a31 * (a02 * a23 - a03 * a22));
    out[2]  =  (a01 * (a12 * a33 - a13 * a32) - a11 * (a02 * a33 - a03 * a32) + a31 * (a02 * a13 - a03 * a12));
    out[3]  = -(a01 * (a12 * a23 - a13 * a22) - a11 * (a02 * a23 - a03 * a22) + a21 * (a02 * a13 - a03 * a12));
    out[4]  = -(a10 * (a22 * a33 - a23 * a32) - a20 * (a12 * a33 - a13 * a32) + a30 * (a12 * a23 - a13 * a22));
    out[5]  =  (a00 * (a22 * a33 - a23 * a32) - a20 * (a02 * a33 - a03 * a32) + a30 * (a02 * a23 - a03 * a22));
    out[6]  = -(a00 * (a12 * a33 - a13 * a32) - a10 * (a02 * a33 - a03 * a32) + a30 * (a02 * a13 - a03 * a12));
    out[7]  =  (a00 * (a12 * a23 - a13 * a22) - a10 * (a02 * a23 - a03 * a22) + a20 * (a02 * a13 - a03 * a12));
    out[8]  =  (a10 * (a21 * a33 - a23 * a31) - a20 * (a11 * a33 - a13 * a31) + a30 * (a11 * a23 - a13 * a21));
    out[9]  = -(a00 * (a21 * a33 - a23 * a31) - a20 * (a01 * a33 - a03 * a31) + a30 * (a01 * a23 - a03 * a21));
    out[10] =  (a00 * (a11 * a33 - a13 * a31) - a10 * (a01 * a33 - a03 * a31) + a30 * (a01 * a13 - a03 * a11));
    out[11] = -(a00 * (a11 * a23 - a13 * a21) - a10 * (a01 * a23 - a03 * a21) + a20 * (a01 * a13 - a03 * a11));
    out[12] = -(a10 * (a21 * a32 - a22 * a31) - a20 * (a11 * a32 - a12 * a31) + a30 * (a11 * a22 - a12 * a21));
    out[13] =  (a00 * (a21 * a32 - a22 * a31) - a20 * (a01 * a32 - a02 * a31) + a30 * (a01 * a22 - a02 * a21));
    out[14] = -(a00 * (a11 * a32 - a12 * a31) - a10 * (a01 * a32 - a02 * a31) + a30 * (a01 * a12 - a02 * a11));
    out[15] =  (a00 * (a11 * a22 - a12 * a21) - a10 * (a01 * a22 - a02 * a21) + a20 * (a01 * a12 - a02 * a11));
    return out;
};

/**
 * Calculates the determinant of a mat4
 *
 * @param {Mat4} a the source matrix
 * @returns {Number} determinant of a
 * @method module:mat4.determinant
 */
mat4.determinant = function (a) {
    var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
        a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
        a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
        a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],

        b00 = a00 * a11 - a01 * a10,
        b01 = a00 * a12 - a02 * a10,
        b02 = a00 * a13 - a03 * a10,
        b03 = a01 * a12 - a02 * a11,
        b04 = a01 * a13 - a03 * a11,
        b05 = a02 * a13 - a03 * a12,
        b06 = a20 * a31 - a21 * a30,
        b07 = a20 * a32 - a22 * a30,
        b08 = a20 * a33 - a23 * a30,
        b09 = a21 * a32 - a22 * a31,
        b10 = a21 * a33 - a23 * a31,
        b11 = a22 * a33 - a23 * a32;

    // Calculate the determinant
    return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
};

/**
 * Multiplies two mat4's
 *
 * @param {Mat4} a the first operand
 * @param {Mat4} b the second operand
 * @returns {Mat4} out
 * @param {Mat4} out the receiving matrix
 * @method module:mat4.multiply
 */
mat4.multiply = function (a, b, out) {
    var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
        a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
        a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
        a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];

    // Cache only the current line of the second matrix
    var b0  = b[0], b1 = b[1], b2 = b[2], b3 = b[3];  
    out[0] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
    out[1] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
    out[2] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
    out[3] = b0*a03 + b1*a13 + b2*a23 + b3*a33;

    b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7];
    out[4] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
    out[5] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
    out[6] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
    out[7] = b0*a03 + b1*a13 + b2*a23 + b3*a33;

    b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11];
    out[8] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
    out[9] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
    out[10] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
    out[11] = b0*a03 + b1*a13 + b2*a23 + b3*a33;

    b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15];
    out[12] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
    out[13] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
    out[14] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
    out[15] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
    return out;
};

/**
 * Alias for {@link mat4.multiply}
 * @function
 * @method module:mat4.mul
 */
mat4.mul = mat4.multiply;

/**
 * Translate a mat4 by the given vector
 *
 * @param {Mat4} a the matrix to translate
 * @param {Vec3} v vector to translate by
 * @returns {Mat4} out
 * @param {Mat4} out the receiving matrix
 * @method module:mat4.translate
 */
mat4.translate = function (a, v, out) {
    var x = v[0], y = v[1], z = v[2],
        a00, a01, a02, a03,
        a10, a11, a12, a13,
        a20, a21, a22, a23;

    if (a === out) {
        out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];
        out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];
        out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];
        out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];
    } else {
        a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3];
        a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7];
        a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11];

        out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a03;
        out[4] = a10; out[5] = a11; out[6] = a12; out[7] = a13;
        out[8] = a20; out[9] = a21; out[10] = a22; out[11] = a23;

        out[12] = a00 * x + a10 * y + a20 * z + a[12];
        out[13] = a01 * x + a11 * y + a21 * z + a[13];
        out[14] = a02 * x + a12 * y + a22 * z + a[14];
        out[15] = a03 * x + a13 * y + a23 * z + a[15];
    }

    return out;
};

/**
 * Scales the mat4 by the dimensions in the given vec3
 *
 * @param {Mat4} a the matrix to scale
 * @param {Vec3} v the vec3 to scale the matrix by
 * @returns {Mat4} out
 * @param {Mat4} out the receiving matrix
 * @method module:mat4.scale
 */
mat4.scale = function(a, v, out) {
    var x = v[0], y = v[1], z = v[2];

    out[0] = a[0] * x;
    out[1] = a[1] * x;
    out[2] = a[2] * x;
    out[3] = a[3] * x;
    out[4] = a[4] * y;
    out[5] = a[5] * y;
    out[6] = a[6] * y;
    out[7] = a[7] * y;
    out[8] = a[8] * z;
    out[9] = a[9] * z;
    out[10] = a[10] * z;
    out[11] = a[11] * z;
    out[12] = a[12];
    out[13] = a[13];
    out[14] = a[14];
    out[15] = a[15];
    return out;
};

/**
 * Rotates a mat4 by the given angle around the given axis
 *
 * @param {Mat4} a the matrix to rotate
 * @param {Number} rad the angle to rotate the matrix by
 * @param {Vec3} axis the axis to rotate around
 * @returns {Mat4} out
 * @param {Mat4} out the receiving matrix
 * @method module:mat4.rotate
 */
mat4.rotate = function (a, rad, axis, out) {
    var x = axis[0], y = axis[1], z = axis[2],
        len = Math.sqrt(x * x + y * y + z * z),
        s, c, t,
        a00, a01, a02, a03,
        a10, a11, a12, a13,
        a20, a21, a22, a23,
        b00, b01, b02,
        b10, b11, b12,
        b20, b21, b22;

    if (Math.abs(len) < GLMAT_EPSILON) { return null; }
    
    len = 1 / len;
    x *= len;
    y *= len;
    z *= len;

    s = Math.sin(rad);
    c = Math.cos(rad);
    t = 1 - c;

    a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3];
    a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7];
    a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11];

    // Construct the elements of the rotation matrix
    b00 = x * x * t + c; b01 = y * x * t + z * s; b02 = z * x * t - y * s;
    b10 = x * y * t - z * s; b11 = y * y * t + c; b12 = z * y * t + x * s;
    b20 = x * z * t + y * s; b21 = y * z * t - x * s; b22 = z * z * t + c;

    // Perform rotation-specific matrix multiplication
    out[0] = a00 * b00 + a10 * b01 + a20 * b02;
    out[1] = a01 * b00 + a11 * b01 + a21 * b02;
    out[2] = a02 * b00 + a12 * b01 + a22 * b02;
    out[3] = a03 * b00 + a13 * b01 + a23 * b02;
    out[4] = a00 * b10 + a10 * b11 + a20 * b12;
    out[5] = a01 * b10 + a11 * b11 + a21 * b12;
    out[6] = a02 * b10 + a12 * b11 + a22 * b12;
    out[7] = a03 * b10 + a13 * b11 + a23 * b12;
    out[8] = a00 * b20 + a10 * b21 + a20 * b22;
    out[9] = a01 * b20 + a11 * b21 + a21 * b22;
    out[10] = a02 * b20 + a12 * b21 + a22 * b22;
    out[11] = a03 * b20 + a13 * b21 + a23 * b22;

    if (a !== out) { // If the source and destination differ, copy the unchanged last row
        out[12] = a[12];
        out[13] = a[13];
        out[14] = a[14];
        out[15] = a[15];
    }
    return out;
};

/**
 * Rotates a matrix by the given angle around the X axis
 *
 * @param {Mat4} a the matrix to rotate
 * @param {Number} rad the angle to rotate the matrix by
 * @returns {Mat4} out
 * @param {Mat4} out the receiving matrix
 * @method module:mat4.rotateX
 */
mat4.rotateX = function (a, rad, out) {
    var s = Math.sin(rad),
        c = Math.cos(rad),
        a10 = a[4],
        a11 = a[5],
        a12 = a[6],
        a13 = a[7],
        a20 = a[8],
        a21 = a[9],
        a22 = a[10],
        a23 = a[11];

    if (a !== out) { // If the source and destination differ, copy the unchanged rows
        out[0]  = a[0];
        out[1]  = a[1];
        out[2]  = a[2];
        out[3]  = a[3];
        out[12] = a[12];
        out[13] = a[13];
        out[14] = a[14];
        out[15] = a[15];
    }

    // Perform axis-specific matrix multiplication
    out[4] = a10 * c + a20 * s;
    out[5] = a11 * c + a21 * s;
    out[6] = a12 * c + a22 * s;
    out[7] = a13 * c + a23 * s;
    out[8] = a20 * c - a10 * s;
    out[9] = a21 * c - a11 * s;
    out[10] = a22 * c - a12 * s;
    out[11] = a23 * c - a13 * s;
    return out;
};

/**
 * Rotates a matrix by the given angle around the Y axis
 *
 * @param {Mat4} a the matrix to rotate
 * @param {Number} rad the angle to rotate the matrix by
 * @returns {Mat4} out
 * @param {Mat4} out the receiving matrix
 * @method module:mat4.rotateY
 */
mat4.rotateY = function (a, rad, out) {
    var s = Math.sin(rad),
        c = Math.cos(rad),
        a00 = a[0],
        a01 = a[1],
        a02 = a[2],
        a03 = a[3],
        a20 = a[8],
        a21 = a[9],
        a22 = a[10],
        a23 = a[11];

    if (a !== out) { // If the source and destination differ, copy the unchanged rows
        out[4]  = a[4];
        out[5]  = a[5];
        out[6]  = a[6];
        out[7]  = a[7];
        out[12] = a[12];
        out[13] = a[13];
        out[14] = a[14];
        out[15] = a[15];
    }

    // Perform axis-specific matrix multiplication
    out[0] = a00 * c - a20 * s;
    out[1] = a01 * c - a21 * s;
    out[2] = a02 * c - a22 * s;
    out[3] = a03 * c - a23 * s;
    out[8] = a00 * s + a20 * c;
    out[9] = a01 * s + a21 * c;
    out[10] = a02 * s + a22 * c;
    out[11] = a03 * s + a23 * c;
    return out;
};

/**
 * Rotates a matrix by the given angle around the Z axis
 *
 * @param {Mat4} a the matrix to rotate
 * @param {Number} rad the angle to rotate the matrix by
 * @returns {Mat4} out
 * @param {Mat4} out the receiving matrix
 * @method module:mat4.rotateZ
 */
mat4.rotateZ = function (a, rad, out) {
    var s = Math.sin(rad),
        c = Math.cos(rad),
        a00 = a[0],
        a01 = a[1],
        a02 = a[2],
        a03 = a[3],
        a10 = a[4],
        a11 = a[5],
        a12 = a[6],
        a13 = a[7];

    if (a !== out) { // If the source and destination differ, copy the unchanged last row
        out[8]  = a[8];
        out[9]  = a[9];
        out[10] = a[10];
        out[11] = a[11];
        out[12] = a[12];
        out[13] = a[13];
        out[14] = a[14];
        out[15] = a[15];
    }

    // Perform axis-specific matrix multiplication
    out[0] = a00 * c + a10 * s;
    out[1] = a01 * c + a11 * s;
    out[2] = a02 * c + a12 * s;
    out[3] = a03 * c + a13 * s;
    out[4] = a10 * c - a00 * s;
    out[5] = a11 * c - a01 * s;
    out[6] = a12 * c - a02 * s;
    out[7] = a13 * c - a03 * s;
    return out;
};

/**
 * Creates a matrix from a vector translation
 * This is equivalent to (but much faster than):
 *
 *     mat4.identity(dest);
 *     mat4.translate(dest, dest, vec);
 *
 * @param {Vec3} v Translation vector
 * @returns {Mat4} out
 * @param {Mat4} out mat4 receiving operation result
 * @method module:mat4.fromTranslation
 */
mat4.fromTranslation = function(v, out) {
    out[0] = 1;
    out[1] = 0;
    out[2] = 0;
    out[3] = 0;
    out[4] = 0;
    out[5] = 1;
    out[6] = 0;
    out[7] = 0;
    out[8] = 0;
    out[9] = 0;
    out[10] = 1;
    out[11] = 0;
    out[12] = v[0];
    out[13] = v[1];
    out[14] = v[2];
    out[15] = 1;
    return out;
}

/**
 * Creates a matrix from a vector scaling
 * This is equivalent to (but much faster than):
 *
 *     mat4.identity(dest);
 *     mat4.scale(dest, dest, vec);
 *
 * @param {Vec3} v Scaling vector
 * @returns {Mat4} out
 * @param {Mat4} out mat4 receiving operation result
 * @method module:mat4.fromScaling
 */
mat4.fromScaling = function(v, out) {
    out[0] = v[0];
    out[1] = 0;
    out[2] = 0;
    out[3] = 0;
    out[4] = 0;
    out[5] = v[1];
    out[6] = 0;
    out[7] = 0;
    out[8] = 0;
    out[9] = 0;
    out[10] = v[2];
    out[11] = 0;
    out[12] = 0;
    out[13] = 0;
    out[14] = 0;
    out[15] = 1;
    return out;
}

/**
 * Creates a matrix from a given angle around a given axis
 * This is equivalent to (but much faster than):
 *
 *     mat4.identity(dest);
 *     mat4.rotate(dest, dest, rad, axis);
 *
 * @param {Number} rad the angle to rotate the matrix by
 * @param {Vec3} axis the axis to rotate around
 * @returns {Mat4} out
 * @param {Mat4} out mat4 receiving operation result
 * @method module:mat4.fromRotation
 */
mat4.fromRotation = function(rad, axis, out) {
    var x = axis[0], y = axis[1], z = axis[2],
        len = Math.sqrt(x * x + y * y + z * z),
        s, c, t;
    
    if (Math.abs(len) < GLMAT_EPSILON) { return null; }
    
    len = 1 / len;
    x *= len;
    y *= len;
    z *= len;
    
    s = Math.sin(rad);
    c = Math.cos(rad);
    t = 1 - c;
    
    // Perform rotation-specific matrix multiplication
    out[0] = x * x * t + c;
    out[1] = y * x * t + z * s;
    out[2] = z * x * t - y * s;
    out[3] = 0;
    out[4] = x * y * t - z * s;
    out[5] = y * y * t + c;
    out[6] = z * y * t + x * s;
    out[7] = 0;
    out[8] = x * z * t + y * s;
    out[9] = y * z * t - x * s;
    out[10] = z * z * t + c;
    out[11] = 0;
    out[12] = 0;
    out[13] = 0;
    out[14] = 0;
    out[15] = 1;
    return out;
}

/**
 * Creates a matrix from the given angle around the X axis
 * This is equivalent to (but much faster than):
 *
 *     mat4.identity(dest);
 *     mat4.rotateX(dest, dest, rad);
 *
 * @param {Number} rad the angle to rotate the matrix by
 * @returns {Mat4} out
 * @param {Mat4} out mat4 receiving operation result
 * @method module:mat4.fromXRotation
 */
mat4.fromXRotation = function(rad, out) {
    var s = Math.sin(rad),
        c = Math.cos(rad);
    
    // Perform axis-specific matrix multiplication
    out[0]  = 1;
    out[1]  = 0;
    out[2]  = 0;
    out[3]  = 0;
    out[4] = 0;
    out[5] = c;
    out[6] = s;
    out[7] = 0;
    out[8] = 0;
    out[9] = -s;
    out[10] = c;
    out[11] = 0;
    out[12] = 0;
    out[13] = 0;
    out[14] = 0;
    out[15] = 1;
    return out;
}

/**
 * Creates a matrix from the given angle around the Y axis
 * This is equivalent to (but much faster than):
 *
 *     mat4.identity(dest);
 *     mat4.rotateY(dest, dest, rad);
 *
 * @param {Number} rad the angle to rotate the matrix by
 * @returns {Mat4} out
 * @param {Mat4} out mat4 receiving operation result
 * @method module:mat4.fromYRotation
 */
mat4.fromYRotation = function(rad, out) {
    var s = Math.sin(rad),
        c = Math.cos(rad);
    
    // Perform axis-specific matrix multiplication
    out[0]  = c;
    out[1]  = 0;
    out[2]  = -s;
    out[3]  = 0;
    out[4] = 0;
    out[5] = 1;
    out[6] = 0;
    out[7] = 0;
    out[8] = s;
    out[9] = 0;
    out[10] = c;
    out[11] = 0;
    out[12] = 0;
    out[13] = 0;
    out[14] = 0;
    out[15] = 1;
    return out;
}

/**
 * Creates a matrix from the given angle around the Z axis
 * This is equivalent to (but much faster than):
 *
 *     mat4.identity(dest);
 *     mat4.rotateZ(dest, dest, rad);
 *
 * @param {Number} rad the angle to rotate the matrix by
 * @returns {Mat4} out
 * @param {Mat4} out mat4 receiving operation result
 * @method module:mat4.fromZRotation
 */
mat4.fromZRotation = function(rad, out) {
    var s = Math.sin(rad),
        c = Math.cos(rad);
    
    // Perform axis-specific matrix multiplication
    out[0]  = c;
    out[1]  = s;
    out[2]  = 0;
    out[3]  = 0;
    out[4] = -s;
    out[5] = c;
    out[6] = 0;
    out[7] = 0;
    out[8] = 0;
    out[9] = 0;
    out[10] = 1;
    out[11] = 0;
    out[12] = 0;
    out[13] = 0;
    out[14] = 0;
    out[15] = 1;
    return out;
}

/**
 * Creates a matrix from a quaternion rotation and vector translation
 * This is equivalent to (but much faster than):
 *
 *     mat4.identity(dest);
 *     mat4.translate(dest, vec);
 *     var quatMat = mat4.create();
 *     quat4.toMat4(quat, quatMat);
 *     mat4.multiply(dest, quatMat);
 *
 * @param {quat4} q Rotation quaternion
 * @param {Vec3} v Translation vector
 * @returns {Mat4} out
 * @param {Mat4} out mat4 receiving operation result
 * @method module:mat4.fromRotationTranslation
 */
mat4.fromRotationTranslation = function (q, v, out) {
    // Quaternion math
    var x = q[0], y = q[1], z = q[2], w = q[3],
        x2 = x + x,
        y2 = y + y,
        z2 = z + z,

        xx = x * x2,
        xy = x * y2,
        xz = x * z2,
        yy = y * y2,
        yz = y * z2,
        zz = z * z2,
        wx = w * x2,
        wy = w * y2,
        wz = w * z2;

    out[0] = 1 - (yy + zz);
    out[1] = xy + wz;
    out[2] = xz - wy;
    out[3] = 0;
    out[4] = xy - wz;
    out[5] = 1 - (xx + zz);
    out[6] = yz + wx;
    out[7] = 0;
    out[8] = xz + wy;
    out[9] = yz - wx;
    out[10] = 1 - (xx + yy);
    out[11] = 0;
    out[12] = v[0];
    out[13] = v[1];
    out[14] = v[2];
    out[15] = 1;
    
    return out;
};

/**
 * Creates a matrix from a quaternion rotation, vector translation and vector scale
 * This is equivalent to (but much faster than):
 *
 *     mat4.identity(dest);
 *     mat4.translate(dest, vec);
 *     var quatMat = mat4.create();
 *     quat4.toMat4(quat, quatMat);
 *     mat4.multiply(dest, quatMat);
 *     mat4.scale(dest, scale)
 *
 * @param {quat4} q Rotation quaternion
 * @param {Vec3} v Translation vector
 * @param {Vec3} s Scaling vector
 * @returns {Mat4} out
 * @param {Mat4} out mat4 receiving operation result
 * @method module:mat4.fromRotationTranslationScale
 */
mat4.fromRotationTranslationScale = function (q, v, s, out) {
    // Quaternion math
    var x = q[0], y = q[1], z = q[2], w = q[3],
        x2 = x + x,
        y2 = y + y,
        z2 = z + z,

        xx = x * x2,
        xy = x * y2,
        xz = x * z2,
        yy = y * y2,
        yz = y * z2,
        zz = z * z2,
        wx = w * x2,
        wy = w * y2,
        wz = w * z2,
        sx = s[0],
        sy = s[1],
        sz = s[2];

    out[0] = (1 - (yy + zz)) * sx;
    out[1] = (xy + wz) * sx;
    out[2] = (xz - wy) * sx;
    out[3] = 0;
    out[4] = (xy - wz) * sy;
    out[5] = (1 - (xx + zz)) * sy;
    out[6] = (yz + wx) * sy;
    out[7] = 0;
    out[8] = (xz + wy) * sz;
    out[9] = (yz - wx) * sz;
    out[10] = (1 - (xx + yy)) * sz;
    out[11] = 0;
    out[12] = v[0];
    out[13] = v[1];
    out[14] = v[2];
    out[15] = 1;
    
    return out;
};

/**
 * Creates a matrix from a quaternion rotation, vector translation and vector scale, rotating and scaling around the given origin
 * This is equivalent to (but much faster than):
 *
 *     mat4.identity(dest);
 *     mat4.translate(dest, vec);
 *     mat4.translate(dest, origin);
 *     var quatMat = mat4.create();
 *     quat4.toMat4(quat, quatMat);
 *     mat4.multiply(dest, quatMat);
 *     mat4.scale(dest, scale)
 *     mat4.translate(dest, negativeOrigin);
 *
 * @param {quat4} q Rotation quaternion
 * @param {Vec3} v Translation vector
 * @param {Vec3} s Scaling vector
 * @param {Vec3} o The origin vector around which to scale and rotate
 * @returns {Mat4} out
 * @param {Mat4} out mat4 receiving operation result
 * @method module:mat4.fromRotationTranslationScaleOrigin
 */
mat4.fromRotationTranslationScaleOrigin = function (q, v, s, o, out) {
  // Quaternion math
  var x = q[0], y = q[1], z = q[2], w = q[3],
      x2 = x + x,
      y2 = y + y,
      z2 = z + z,

      xx = x * x2,
      xy = x * y2,
      xz = x * z2,
      yy = y * y2,
      yz = y * z2,
      zz = z * z2,
      wx = w * x2,
      wy = w * y2,
      wz = w * z2,
      
      sx = s[0],
      sy = s[1],
      sz = s[2],

      ox = o[0],
      oy = o[1],
      oz = o[2];
      
  out[0] = (1 - (yy + zz)) * sx;
  out[1] = (xy + wz) * sx;
  out[2] = (xz - wy) * sx;
  out[3] = 0;
  out[4] = (xy - wz) * sy;
  out[5] = (1 - (xx + zz)) * sy;
  out[6] = (yz + wx) * sy;
  out[7] = 0;
  out[8] = (xz + wy) * sz;
  out[9] = (yz - wx) * sz;
  out[10] = (1 - (xx + yy)) * sz;
  out[11] = 0;
  out[12] = v[0] + ox - (out[0] * ox + out[4] * oy + out[8] * oz);
  out[13] = v[1] + oy - (out[1] * ox + out[5] * oy + out[9] * oz);
  out[14] = v[2] + oz - (out[2] * ox + out[6] * oy + out[10] * oz);
  out[15] = 1;
        
  return out;
};

mat4.fromQuat = function (q, out) {
    var x = q[0], y = q[1], z = q[2], w = q[3],
        x2 = x + x,
        y2 = y + y,
        z2 = z + z,

        xx = x * x2,
        yx = y * x2,
        yy = y * y2,
        zx = z * x2,
        zy = z * y2,
        zz = z * z2,
        wx = w * x2,
        wy = w * y2,
        wz = w * z2;

    out[0] = 1 - yy - zz;
    out[1] = yx + wz;
    out[2] = zx - wy;
    out[3] = 0;

    out[4] = yx - wz;
    out[5] = 1 - xx - zz;
    out[6] = zy + wx;
    out[7] = 0;

    out[8] = zx + wy;
    out[9] = zy - wx;
    out[10] = 1 - xx - yy;
    out[11] = 0;

    out[12] = 0;
    out[13] = 0;
    out[14] = 0;
    out[15] = 1;

    return out;
};

/**
 * Generates a frustum matrix with the given bounds
 *
 * @param {Number} left Left bound of the frustum
 * @param {Number} right Right bound of the frustum
 * @param {Number} bottom Bottom bound of the frustum
 * @param {Number} top Top bound of the frustum
 * @param {Number} near Near bound of the frustum
 * @param {Number} far Far bound of the frustum
 * @returns {Mat4} out
 * @param {Mat4} out mat4 frustum matrix will be written into
 * @method module:mat4.frustum
 */
mat4.frustum = function (left, right, bottom, top, near, far, out) {
    var rl = 1 / (right - left),
        tb = 1 / (top - bottom),
        nf = 1 / (near - far);
    out[0] = (near * 2) * rl;
    out[1] = 0;
    out[2] = 0;
    out[3] = 0;
    out[4] = 0;
    out[5] = (near * 2) * tb;
    out[6] = 0;
    out[7] = 0;
    out[8] = (right + left) * rl;
    out[9] = (top + bottom) * tb;
    out[10] = (far + near) * nf;
    out[11] = -1;
    out[12] = 0;
    out[13] = 0;
    out[14] = (far * near * 2) * nf;
    out[15] = 0;
    return out;
};

/**
 * Generates a perspective projection matrix with the given bounds
 *
 * @param {number} fovy Vertical field of view in radians
 * @param {number} aspect Aspect ratio. typically viewport width/height
 * @param {number} near Near bound of the frustum
 * @param {number} far Far bound of the frustum
 * @returns {Mat4} out
 * @param {Mat4} out mat4 frustum matrix will be written into
 * @method module:mat4.perspective
 */
mat4.perspective = function (fovy, aspect, near, far, out) {
    var f = 1.0 / Math.tan(fovy / 2),
        nf = 1 / (near - far);
    out[0] = f / aspect;
    out[1] = 0;
    out[2] = 0;
    out[3] = 0;
    out[4] = 0;
    out[5] = f;
    out[6] = 0;
    out[7] = 0;
    out[8] = 0;
    out[9] = 0;
    out[10] = (far + near) * nf;
    out[11] = -1;
    out[12] = 0;
    out[13] = 0;
    out[14] = (2 * far * near) * nf;
    out[15] = 0;
    return out;
};

/**
 * Generates a perspective projection matrix with the given field of view.
 * This is primarily useful for generating projection matrices to be used
 * with the still experiemental WebVR API.
 *
 * @param {number} fov Object containing the following values: upDegrees, downDegrees, leftDegrees, rightDegrees
 * @param {number} near Near bound of the frustum
 * @param {number} far Far bound of the frustum
 * @returns {Mat4} out
 * @param {Mat4} out mat4 frustum matrix will be written into
 * @method module:mat4.perspectiveFromFieldOfView
 */
mat4.perspectiveFromFieldOfView = function (fov, near, far, out) {
    var upTan = Math.tan(fov.upDegrees * Math.PI/180.0),
        downTan = Math.tan(fov.downDegrees * Math.PI/180.0),
        leftTan = Math.tan(fov.leftDegrees * Math.PI/180.0),
        rightTan = Math.tan(fov.rightDegrees * Math.PI/180.0),
        xScale = 2.0 / (leftTan + rightTan),
        yScale = 2.0 / (upTan + downTan);

    out[0] = xScale;
    out[1] = 0.0;
    out[2] = 0.0;
    out[3] = 0.0;
    out[4] = 0.0;
    out[5] = yScale;
    out[6] = 0.0;
    out[7] = 0.0;
    out[8] = -((leftTan - rightTan) * xScale * 0.5);
    out[9] = ((upTan - downTan) * yScale * 0.5);
    out[10] = far / (near - far);
    out[11] = -1.0;
    out[12] = 0.0;
    out[13] = 0.0;
    out[14] = (far * near) / (near - far);
    out[15] = 0.0;
    return out;
}

/**
 * Generates a orthogonal projection matrix with the given bounds
 *
 * @param {number} left Left bound of the frustum
 * @param {number} right Right bound of the frustum
 * @param {number} bottom Bottom bound of the frustum
 * @param {number} top Top bound of the frustum
 * @param {number} near Near bound of the frustum
 * @param {number} far Far bound of the frustum
 * @returns {Mat4} out
 * @param {Mat4} out mat4 frustum matrix will be written into
 * @method module:mat4.ortho
 */
mat4.ortho = function (left, right, bottom, top, near, far, out) {
    var lr = 1 / (left - right),
        bt = 1 / (bottom - top),
        nf = 1 / (near - far);
    out[0] = -2 * lr;
    out[1] = 0;
    out[2] = 0;
    out[3] = 0;
    out[4] = 0;
    out[5] = -2 * bt;
    out[6] = 0;
    out[7] = 0;
    out[8] = 0;
    out[9] = 0;
    out[10] = 2 * nf;
    out[11] = 0;
    out[12] = (left + right) * lr;
    out[13] = (top + bottom) * bt;
    out[14] = (far + near) * nf;
    out[15] = 1;
    return out;
};

/**
 * Generates a look-at matrix with the given eye position, focal point, and up axis
 *
 * @param {Vec3} eye Position of the viewer
 * @param {Vec3} center Point the viewer is looking at
 * @param {Vec3} up vec3 pointing up
 * @returns {Mat4} out
 * @param {Mat4} out mat4 frustum matrix will be written into
 * @method module:mat4.lookAt
 */
mat4.lookAt = function (eye, center, up, out) {
    var x0, x1, x2, y0, y1, y2, z0, z1, z2, len,
        eyex = eye[0],
        eyey = eye[1],
        eyez = eye[2],
        upx = up[0],
        upy = up[1],
        upz = up[2],
        centerx = center[0],
        centery = center[1],
        centerz = center[2];

    if (Math.abs(eyex - centerx) < GLMAT_EPSILON &&
        Math.abs(eyey - centery) < GLMAT_EPSILON &&
        Math.abs(eyez - centerz) < GLMAT_EPSILON) {
        return mat4.identity(out);
    }

    z0 = eyex - centerx;
    z1 = eyey - centery;
    z2 = eyez - centerz;

    len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2);
    z0 *= len;
    z1 *= len;
    z2 *= len;

    x0 = upy * z2 - upz * z1;
    x1 = upz * z0 - upx * z2;
    x2 = upx * z1 - upy * z0;
    len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2);
    if (!len) {
        x0 = 0;
        x1 = 0;
        x2 = 0;
    } else {
        len = 1 / len;
        x0 *= len;
        x1 *= len;
        x2 *= len;
    }

    y0 = z1 * x2 - z2 * x1;
    y1 = z2 * x0 - z0 * x2;
    y2 = z0 * x1 - z1 * x0;

    len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2);
    if (!len) {
        y0 = 0;
        y1 = 0;
        y2 = 0;
    } else {
        len = 1 / len;
        y0 *= len;
        y1 *= len;
        y2 *= len;
    }

    out[0] = x0;
    out[1] = y0;
    out[2] = z0;
    out[3] = 0;
    out[4] = x1;
    out[5] = y1;
    out[6] = z1;
    out[7] = 0;
    out[8] = x2;
    out[9] = y2;
    out[10] = z2;
    out[11] = 0;
    out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez);
    out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez);
    out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez);
    out[15] = 1;

    return out;
};

/**
 * Returns a string representation of a mat4
 *
 * @param {Mat4} mat matrix to represent as a string
 * @returns {String} string representation of the matrix
 * @method module:mat4.str
 */
mat4.str = function (a) {
    return 'mat4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' +
                    a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' +
                    a[8] + ', ' + a[9] + ', ' + a[10] + ', ' + a[11] + ', ' + 
                    a[12] + ', ' + a[13] + ', ' + a[14] + ', ' + a[15] + ')';
};

/**
 * Returns Frobenius norm of a mat4
 *
 * @param {Mat4} a the matrix to calculate Frobenius norm of
 * @returns {Number} Frobenius norm
 * @method module:mat4.frob
 */
mat4.frob = function (a) {
    return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2) + Math.pow(a[9], 2) + Math.pow(a[10], 2) + Math.pow(a[11], 2) + Math.pow(a[12], 2) + Math.pow(a[13], 2) + Math.pow(a[14], 2) + Math.pow(a[15], 2) ))
};


}

b4w.module["mat4"] = b4w.module["__mat4"];